A219836
Triangular array counting derangements by number of descents.
Original entry on oeis.org
1, 2, 0, 4, 4, 1, 8, 24, 12, 0, 16, 104, 120, 24, 1, 32, 392, 896, 480, 54, 0, 64, 1368, 5544, 5984, 1764, 108, 1, 128, 4552, 30384, 57640, 34520, 6048, 224, 0, 256, 14680, 153400, 470504, 495320, 180416, 19936, 448, 1
Offset: 2
Array begins
1
2, 0
4, 4, 1
8, 24, 12, 0
16, 104, 120, 24, 1
T(4,2) = 4 counts 2143, 3142, 3421, 4312.
Cf.
A008292. (analogous for permutations)
Row sums give
A000166.
A046739 counts derangements of [n] by number of excedances.
-
u[n_, 0] := 0; u[n_, k_] /; k == n-1 := If [EvenQ[n], 1, 0]; u[n_, k_] /; 1 <= k <= n - 2 := (n - k) u[n - 1, k - 1] + (k + 1) u[n - 1, k]; Table[u[n, k], {n, 2, 10}, {k, n - 1}]
A065340
Third diagonal of triangle in A046740.
Original entry on oeis.org
2, 28, 182, 864, 3474, 12660, 43358, 142552, 455930, 1430796, 4431078, 13595664, 41441570, 125732836, 380212142, 1147057800, 3454803594, 10393245180, 31240551350, 93849578560, 281817169202, 846013542228, 2539215029502, 7620094559544, 22865383949594
Offset: 4
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (10,-40,82,-91,52,-12).
A321967
Triangle read by rows, T(n,k) = binomial(-k-n-1, -2*n-1)*E1(k+n, n), E1 the Eulerian numbers A173018, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, -4, 11, 0, 15, -156, 302, 0, -56, 1596, -9528, 15619, 0, 210, -14400, 193185, -882340, 1310354, 0, -792, 122265, -3213760, 30042672, -116857368, 162512286, 0, 3003, -1005004, 47887840, -802069632, 6034981134, -21078701112, 27971176092
Offset: 0
Triangle starts:
1;
0, 1;
0, -4, 11;
0, 15, -156, 302;
0, -56, 1596, -9528, 15619;
0, 210, -14400, 193185, -882340, 1310354;
0, -792, 122265, -3213760, 30042672, -116857368, 162512286;
-
T := (n, k) -> binomial(-k-n-1, -2*n-1)*combinat:-eulerian1(k+n, n):
for n from 0 to 7 do seq(T(n,k), k=0..n) od;
-
E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (n - k) E1[n - 1, k - 1] + (k + 1) E1[n - 1, k];
T[n_, k_] := Binomial[-k - n - 1, -2 n - 1] E1[n + k, n];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Dec 30 2018 *)
A363656
Number of bounded affine permutations of size n.
Original entry on oeis.org
1, 3, 13, 87, 761, 8243, 106037, 1578671, 26685361, 504770859, 10562259533, 242216304839, 6040459572681, 162750100464643, 4711225866217381, 145818462291970911, 4805369568409107809, 167982555421167341147, 6208589923091273031293, 241898639921607255506039
Offset: 1
Let [a,b] denote the affine permutation p of size 2 determined by p(1) = a and p(2) = b.
The 3 bounded affine permutations of size 2 are [1,2], [2,1], and [0,3], so a(2) = 3.
A168423
Triangle read by rows: expansion of (1 - x)/(exp(t)*(1 - x*exp(t*(1 - x)))).
Original entry on oeis.org
1, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 7, 1, -1, 1, 1, 21, 21, 1, 1, -1, 1, 51, 161, 51, 1, -1, 1, 1, 113, 813, 813, 113, 1, 1, -1, 1, 239, 3361, 7631, 3361, 239, 1, -1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865
Offset: 0
{1},
{-1, 1},
{1, -1, 1},
{-1, 1, 1, 1},
{1, -1, 1, 7, 1},
{-1, 1, 1, 21, 21, 1},
{1, -1, 1, 51, 161, 51, 1},
{-1, 1, 1, 113, 813, 813, 113, 1},
{1, -1, 1, 239, 3361, 7631, 3361, 239, 1},
{-1, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1},
{1, -1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1}
-
p[t_] = (1 - x)/(Exp[t]*(1 - x*Exp[t*(1 - x)]))
a = Table[ CoefficientList[FullSimplify[ExpandAll[n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 0, 10}];
Flatten[a]
A385588
Number of non-derangements of length n with 2 excedances.
Original entry on oeis.org
0, 4, 45, 251, 1078, 4054, 14115, 46837, 150612, 474200, 1471561, 4520959, 13792002, 41867242, 126649983, 382177817, 1151251648, 3463715980, 10412118981, 31280396611, 93933463950, 281993329214, 846382640155, 2539986780541, 7621705171308, 22868739391744, 68613734367105, 205856772356807
Offset: 3
For n=4, the non-derangements with 2 excedances are 1342, 2314, 2431, and 3241.
-
LinearRecurrence[{10, -40, 82, -91, 52, -12}, {0, 4, 45, 251, 1078, 4054}, 28] (* Hugo Pfoertner, Jul 03 2025 *)
Comments