cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A069891 a(n) = Sum_{k=1..n} A007913(k), the squarefree part of k.

Original entry on oeis.org

0, 1, 3, 6, 7, 12, 18, 25, 27, 28, 38, 49, 52, 65, 79, 94, 95, 112, 114, 133, 138, 159, 181, 204, 210, 211, 237, 240, 247, 276, 306, 337, 339, 372, 406, 441, 442, 479, 517, 556, 566, 607, 649, 692, 703, 708, 754, 801, 804, 805, 807, 858, 871, 924, 930, 985, 999
Offset: 0

Views

Author

Dean Hickerson, Apr 09 2002

Keywords

Comments

Sum_{k=1..n, k squarefree} (1/k) = Sum{k=1..n} (mu(k)^2/k) = (1/zeta(2))*(log(n) + gamma - 2*zeta'(2)/zeta(2)) + O(1/sqrt(n)). (Suryanarayana)

References

  • D. Suryanarayana, Asymptotic formula for sum_{n <= x} mu^{2}(n)/n, Indian J. Math. 9 (1967/1968) 543-545.

Crossrefs

Programs

  • Magma
    [0] cat [&+[Squarefree(k):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Dec 19 2019
    
  • Mathematica
    a[n_] := Sum[If[d == 1, 1, Times@@(1-#1[[1]]^2&) /@ FactorInteger[d]] * Binomial[Floor[n/d^2]+1, 2], {d, 1, Floor[Sqrt[n]]}]; Array[a, 100, 0] (* corrected by Amiram Eldar, Apr 02 2020 *)
  • PARI
    a(n) = sum(k=1, n, core(k)); \\ Michel Marcus, Dec 19 2019

Formula

a(n) = Sum_{d=1..floor(sqrt(n))} f(d)*binomial(floor(n/d^2)+1, 2) where f(d)=A046970(d) is the product of 1-p^2 over all prime divisors p of d.
a(n) is asymptotic to r*n^2, where r = Pi^2/30 = 0.3289868...

A328639 Dirichlet g.f.: zeta(2*s) / (zeta(s) * zeta(s-2)).

Original entry on oeis.org

1, -5, -10, 5, -26, 50, -50, -5, 10, 130, -122, -50, -170, 250, 260, 5, -290, -50, -362, -130, 500, 610, -530, 50, 26, 850, -10, -250, -842, -1300, -962, -5, 1220, 1450, 1300, 50, -1370, 1810, 1700, 130, -1682, -2500, -1850, -610, -260, 2650, -2210, -50, 50, -130
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2019

Keywords

Comments

Dirichlet inverse of A065958.

Crossrefs

Cf. A008683, A008836, A026424 (positions of negative terms), A046970, A065958, A323363, A328640.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DirichletConvolve[j^2, MoebiusMu[j]^2, j, n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 50}]
    Table[DivisorSum[n, LiouvilleLambda[n/#] MoebiusMu[#] #^2 &], {n, 1, 50}]
    f[p_, e_] := (-1)^e*(p^2 + 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *)
  • PARI
    a(n)={sumdiv(n, d, (-1)^bigomega(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA065958(n/d) * a(d).
a(n) = Sum_{d|n} lambda(n/d) * mu(d) * d^2, where lambda = A008836 and mu = A008683.
Multiplicative with a(p^e) = (-1)^e*(p^2 + 1). - Amiram Eldar, Nov 30 2020

A189923 Jordan function J_{-5}(n) multiplied by n^5.

Original entry on oeis.org

1, -31, -242, -31, -3124, 7502, -16806, -31, -242, 96844, -161050, 7502, -371292, 520986, 756008, -31, -1419856, 7502, -2476098, 96844, 4067052, 4992550, -6436342, 7502, -3124, 11510052, -242, 520986, -20511148, -23436248
Offset: 1

Views

Author

Wolfdieter Lang, Jun 16 2011

Keywords

Comments

For the Jordan function J_k see the Comtet and Apostol references.

Examples

			a(2) = a(4) = a(8) = ... = 1 - 2^5 = -31.
a(4) = mu(1)*1^5 + mu(2)*2^5 + mu(4)*4^5 = 1 - 32 + 0 = -31.
Sum identity for n=4: a(1)*(4/1)^5 + a(2)*(4/2)^5 + a(4)*(4/4)^5 = 1024 - 31*32 - 31 = 1.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1986.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A023900, A046970, A063453, A189922, for k=-1..-4.

Programs

  • Mathematica
    a[n_] := Sum[ MoebiusMu[d]*d^5, {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Sep 03 2012 *)
    f[p_, e_] := (1-p^5); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 08 2020 *)
  • PARI
    for(n=1, 200, print1(sumdiv(n, d, moebius(d) * d^5),", ")) \\ Indranil Ghosh, Mar 11 2017
    
  • PARI
    a(n) = sumdiv(n, d, moebius(d) * d^5); \\ Michel Marcus, Jan 14 2018

Formula

a(n) = J_{-5}(n)*n^5 = Product_{p prime |n} (1-p^5), for n>=2, a(1)=1.
a(n) = Sum_{d|n} mu(d)*d^5 with the Moebius function mu = A008683.
Dirichlet g.f.: zeta(s)/zeta(s-5).
Sum identity: Sum_{d|n} a(n)*(n/d)^5 = 1 for all n>=1.
a(n) = a(rad(n)) with rad(n) = A007947(n), the squarefree kernel of n.
G.f.: Sum_{k>=1} mu(k)*k^5*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 15 2017

A307648 G.f. A(x) satisfies: 1/(1 - x) = A(x)*A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 1, -1, -4, -3, -2, 7, 7, 4, -6, 14, -11, -4, -47, 9, 6, 161, -93, -33, -269, 232, -83, 660, -733, 500, -779, 1527, -2291, 1876, -3892, 5598, -3056, 7791, -14088, 11289, -17113, 28083, -26211, 34645, -60715, 73180, -80951, 111926, -155269, 178561, -233709, 359679, -403884, 454659, -697310, 862133
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2019

Keywords

Comments

Euler transform of A055615.

Examples

			G.f.: A(x) = 1 + x - x^2 - 4*x^3 - 3*x^4 - 2*x^5 + 7*x^6 + 7*x^7 + 4*x^8 - 6*x^9 + 14*x^10 - 11*x^11 - 4*x^12 - 47*x^13 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 50; CoefficientList[Series[Product[1/(1 - x^k)^(MoebiusMu[k] k), {k, 1, terms}], {x, 0, terms}], x]
    terms = 50; CoefficientList[Series[Exp[Sum[Sum[MoebiusMu[d] d^2, {d, Divisors[k]}] x^k/k, {k, 1, terms}]], {x, 0, terms}], x]
    terms = 50; A[] = 1; Do[A[x] = 1/((1 - x) Product[A[x^k]^k, {k, 2, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(mu(k)*k).
G.f.: exp(Sum_{k>=1} A046970(k)*x^k/k).

A069056 Numbers k such that Sum_{d|k} d^2*mu(d) divides k^2.

Original entry on oeis.org

1, 12, 24, 36, 48, 72, 96, 108, 120, 144, 192, 216, 240, 288, 324, 336, 360, 384, 432, 480, 576, 600, 648, 672, 720, 768, 864, 960, 972, 1008, 1080, 1152, 1200, 1296, 1344, 1440, 1536, 1728, 1800, 1920, 1944, 2016, 2160, 2304, 2352, 2400, 2448, 2592, 2688
Offset: 1

Views

Author

Benoit Cloitre, Apr 07 2002

Keywords

Comments

Numbers k such that A046970(k) divides k^2. [corrected by Amiram Eldar, Apr 20 2025]
If n > 1, a(n+1) - a(n) == 0 (mod 12), so a(n+1) - a(n) = 12 for n=2,3,4,5,7,8,...; a(n+1) - a(n) = 24 for n=6,9,.... Conjecture: if c > 2 and n > 1, Sum_{d|n} d^c*mu(d) never divides n^c. Hence A063453(n) never divides n^3 for n > 1.

Crossrefs

Programs

  • Haskell
    a069056 n = a069056_list !! (n-1)
    a069056_list = filter (\x -> x ^ 2 `mod` a046970 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 19 2012
  • Mathematica
    f[d_] := d^2*MoebiusMu[d]; ok[n_] := Divisible[n^2, Total[f /@ Divisors[n]]]; Select[Range[3000], ok] (* Jean-François Alcover, Nov 15 2011 *)
    q[k_] := Divisible[k^2, Times @@ ((First[#]^2-1)& /@ FactorInteger[k])]; q[1] = True; Select[Range[3000], q] (* Amiram Eldar, Apr 20 2025 *)
  • PARI
    for(n=1,1000,if(n^2%sumdiv(n,d,moebius(d)*d^2)==0,print1(n,",")))
    
  • PARI
    isok(k) = {my(f = factor(k)); !(k^2 % prod(i = 1, #f~, f[i,1]^2-1));} \\ Amiram Eldar, Apr 20 2025
    

A322324 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Product_{p|n, p prime} (1 - p^k).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -3, -2, 0, 1, -7, -8, -1, 0, 1, -15, -26, -3, -4, 0, 1, -31, -80, -7, -24, 2, 0, 1, -63, -242, -15, -124, 24, -6, 0, 1, -127, -728, -31, -624, 182, -48, -1, 0, 1, -255, -2186, -63, -3124, 1200, -342, -3, -2, 0, 1, -511, -6560, -127, -15624, 7502, -2400, -7, -8, 4, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1, ...
  0, -1,  -3,   -7,   -15,   -31, ...
  0, -2,  -8,  -26,   -80,  -242, ...
  0, -1,  -3,   -7,   -15,   -31, ...
  0, -4, -24, -124,  -624, -3124, ...
  0,  2,  24,  182,  1200,  7502, ...
		

Crossrefs

Columns k=0..5 give A063524, A023900, A046970, A063453, A189922, A189923.
Cf. A008683, A059379, A059380, A321222 (diagonal).

Programs

  • Mathematica
    Table[Function[k, Product[1 - Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[MoebiusMu[j] j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[MoebiusMu[d] d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • PARI
    T(n, k) = sumdiv(n, d, moebius(d)*d^k);
    matrix(6, 6, n, k, T(n, k-1)) \\ Michel Marcus, Dec 03 2018

Formula

G.f. of column k: Sum_{j>=1} mu(j)*j^k*x^j/(1 - x^j).
Dirichlet g.f. of column k: zeta(s)/zeta(s-k).
A(n,k) = Sum_{d|n} mu(d)*d^k.

A351654 Dirichlet g.f.: zeta(s) / (zeta(s-1) * zeta(s-2)).

Original entry on oeis.org

1, -5, -11, 3, -29, 55, -55, 3, 16, 145, -131, -33, -181, 275, 319, 3, -305, -80, -379, -87, 605, 655, -551, -33, 96, 905, 16, -165, -869, -1595, -991, 3, 1441, 1525, 1595, 48, -1405, 1895, 1991, -87, -1721, -3025, -1891, -393, -464, 2755, -2255, -33, 288, -480, 3355, -543, -2861, -80, 3799
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 16 2022

Keywords

Comments

Dirichlet inverse of A069097.

Crossrefs

Programs

  • Mathematica
    A069097[n_] := Sum[GCD[n, k]^2, {k, 1, n}]; a[1] = 1; a[n_] := a[n] = -Sum[A069097[n/d] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
    f[p_, e_] := If[e == 1, 0, p^3] - p^2 - p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 25 2025 *)
  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA069097(n) = sumdiv(n, d, moebius(n/d)*d*sigma(d));
    v351654 = DirInverseCorrect(vector(up_to, n, A069097(n)));
    A351654(n) = v351654[n]; \\ Antti Karttunen, Feb 16 2022
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - p*X)*(1 - p^2*X)/(1 - X))[n], ", ")) \\ Vaclav Kotesovec, Feb 16 2022

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A069097(n/d) * a(d).
a(n) = Sum_{d|n} A023900(n/d) * A334657(d).
a(n) = Sum_{d|n} A046970(n/d) * A055615(d).
a(n) = Sum_{d|n} A000005(n/d) * A328254(d).
Multiplicative with a(p) = -p^2 - p + 1, and a(p^e) = p^3 - p^2 - p + 1 for e >= 2. - Amiram Eldar, May 25 2025

A307656 G.f. A(x) satisfies: (1 - x) = A(x)*A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, -1, 2, 1, 0, 8, -7, 22, -6, 13, 29, -11, 82, -36, 114, 13, 103, 88, 88, 275, -20, 549, -200, 1007, -144, 811, 730, 188, 2093, -777, 3538, -643, 4083, -537, 4562, 2478, 1973, 8062, -3508, 17362, -8164, 20281, -2227, 17483, 8605, 2946, 30190, -6085, 53176, -28913, 78516
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 20 2019

Keywords

Comments

Convolution inverse of A307648.

Examples

			G.f.: A(x) = 1 - x + 2*x^2 + x^3 + 8*x^5 - 7*x^6 + 22 x^7 - 6*x^8 + 13*x^9 + 29*x^10 - 11*x^11 + 82*x^12 - 36*x^13 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 50; CoefficientList[Series[Product[(1 - x^k)^(MoebiusMu[k] k), {k, 1, terms}], {x, 0, terms}], x]
    terms = 50; CoefficientList[Series[Exp[-Sum[Sum[MoebiusMu[d] d^2, {d, Divisors[k]}] x^k/k, {k, 1, terms}]], {x, 0, terms}], x]
    terms = 50; A[] = 1; Do[A[x] = (1 - x)/Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} (1 - x^k)^(mu(k)*k).
G.f.: exp(-Sum_{k>=1} A046970(k)*x^k/k).
Previous Showing 11-18 of 18 results.