cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A047130 Array read by descending antidiagonals: T(h,k) is the number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no up-step crosses the line y = 3x/4. (Thus a path crosses the line only at lattice points and on right-steps.)

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 4, 5, 5, 4, 1, 1, 5, 9, 5, 9, 5, 1, 1, 6, 14, 14, 14, 14, 6, 1, 1, 7, 20, 28, 28, 28, 20, 7, 1, 1, 8, 27, 48, 56, 28, 48, 27, 8, 1, 1, 9, 35, 75, 104, 84, 76, 75, 35, 9, 1, 1, 10, 44, 110, 179, 188, 84
Offset: 0

Views

Author

Clark Kimberling. Definition revised Dec 08 2006

Keywords

Examples

			Array begins:
===================================
h\k | 0 1  2  3   4   5   6   7
----+------------------------------
  0 | 1 1  1  1   1   1   1   1 ...
  1 | 1 1  2  3   4   5   6   7 ...
  2 | 1 2  2  5   9  14  20  27 ...
  3 | 1 3  5  5  14  28  48  75 ...
  4 | 1 4  9 14  28  56 104 179 ...
  5 | 1 5 14 28  28  84 188 367 ...
  6 | 1 6 20 48  76  84 272 639 ...
  7 | 1 7 27 75 151 235 272 911 ...
  ...
		

Crossrefs

Programs

  • PARI
    A(h, k=h)={my(M=matrix(h+1, k+1, i, j, 1)); for(h=1, h, for(k=1, k, M[1+h, 1+k] = M[h, 1+k] + if(4*k>3*h && 4*(k-1)<3*h, 0, M[1+h, k]))); M}
    { my(T=A(10)); for(i=1, #T, print(T[i, ]))} \\ Andrew Howroyd, Jan 19 2020

A047140 Array read by diagonals: T(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no up-step crosses the line y=4x/3. (Thus a path crosses the line only at lattice points and on right-steps.).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 4, 4, 1, 1, 3, 2, 8, 5, 1, 1, 4, 5, 10, 13, 6, 1, 1, 5, 9, 15, 23, 19, 7, 1, 1, 6, 14, 24, 38, 42, 26, 8, 1, 1, 7, 20, 38, 62, 80, 68, 34, 9, 1, 1, 8, 27, 58, 38, 142, 148, 102, 43, 10, 1, 1, 9, 35, 85, 96, 180, 290
Offset: 0

Views

Author

Clark Kimberling. Definition revised Dec 08 2006

Keywords

Examples

			Array begins:
======================================
h\k | 0 1  2   3   4   5    6    7
----+---------------------------------
  0 | 1 1  1   1   1   1    1    1 ...
  1 | 1 2  1   2   3   4    5    6 ...
  2 | 1 3  4   2   5   9   14   20 ...
  3 | 1 4  8  10  15  24   38   58 ...
  4 | 1 5 13  23  38  62   38   96 ...
  5 | 1 6 19  42  80 142  180   96 ...
  6 | 1 7 26  68 148 290  470  566 ...
  7 | 1 8 34 102 250 540 1010 1576 ...
  ...
		

Crossrefs

Programs

  • PARI
    A(h,k=h)={my(M=matrix(h+1,k+1,i,j,1)); for(h=1, h, for(k=1, k, M[1+h, 1+k] = M[h,1+k] + if(3*k>4*h && 3*(k-1)<4*h, 0, M[1+h,k]))); M}
    { my(T=A(10)); for(i=1, #T, print(T[i,]))} \\ Andrew Howroyd, Jan 19 2020

A047099 a(n) = A047098(n)/2.

Original entry on oeis.org

1, 4, 19, 98, 531, 2974, 17060, 99658, 590563, 3540464, 21430267, 130771376, 803538100, 4967127736, 30866224824, 192696614730, 1207967820099, 7600482116932, 47981452358201, 303820299643138, 1929099000980219, 12279621792772822, 78346444891033856
Offset: 1

Views

Author

Clark Kimberling, Dec 11 1999

Keywords

Comments

T(2*n,n)/2, with array T as in A047110.
Also given by a recurrence that features row 3 of the Pascal triangle (Mathematica code): u[0,0]=1; u[n_,k_]/;k<0 || k>n := 0; u[n_,k_]/;0<=k<=n := u[n,k] = u[n-1,k-1] + 3u[n-1,k] + 3u[n-1,k+1] + u[n-1,k+2]; u[n_]:=Sum[u[n,k],{k,0,n}]; Table[u[n],{n,0,10}]. - David Callan, Jul 22 2008
INVERT transform of (1,3,12,55,273,...), the ternary numbers A001764. - David Callan, Nov 21 2011

Crossrefs

Column k=2 of A213027.
Cf. A001764.

Programs

  • Maple
    f := n -> binomial(3*n, n) - (1/2)*add(binomial(3*n, k), k=0..n):
    seq(f(n), n=1..20);
  • Mathematica
    Table[Binomial[3 n, n] - Sum[Binomial[3 n, k], {k, 0, n}]/2, {n, 20}] (* Wesley Ivan Hurt, Jun 13 2014 *)
  • PARI
    {a(n)=local(A=1+x); A=x*exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, j))*x^m/m +x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 04 2012

Formula

a(n) = binomial(3*n, n) - (1/2)*Sum_{k=0..n} binomial(3*n, k). - Vladeta Jovovic, Mar 22 2003
a(n) = A047098(n)/2. - Benoit Cloitre, Jan 28 2004
From Gary W. Adamson, Jul 28 2011: (Start)
a(n) is the upper left term in M^n, where M is the infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
3, 3, 1, 0, 0, 0, ...
3, 3, 3, 1, 0, 0, ...
1, 1, 3, 3, 1, 0, ...
0, 0, 1, 3, 3, 0, ...
0, 0, 0, 1, 3, 0, ...
... (End)
G.f.: x*exp( Sum_{n>=1} A066380*x^n/n ) where A066380(n) = Sum_{k=0..n} binomial(3*n,k). - Paul D. Hanna, Sep 04 2012
G.f.: (F(x)-1)/(2-F(x)), where F(x) is g.f. of A001764. - Vladimir Kruchinin, Jun 13 2014.
a(n) = (1/n)*Sum_{k=1..n} k*C(3*n,n-k). - Vladimir Kruchinin, Oct 03 2022
From Paul D. Hanna, Jun 06 2025: (Start)
G.f. A(x) = Series_Reversion( x*(1 + x)^2 / (1 + 2*x)^3 ).
G.f. satisfies A(x) = x*(1 + 2*A(x))^3 / (1 + A(x))^2.
G.f. satisfies A'(x) = A(x) * (1 + A(x)) * (1 + 2*A(x)) / (x*(1 - A(x))).
(End)

Extensions

Comment revised by Clark Kimberling, Dec 08 2006
Edited by N. J. A. Sloane, Dec 21 2006

A125778 Array T by diagonals: T(h,k)=number of paths consisting of steps from (0,0) to (h,k) such that each step has length 1 directed up or right and no right-step crosses the line y=3x/2. (Thus a path crosses the line only at lattice points and on up-steps.).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 4, 5, 5, 4, 1, 1, 5, 9, 10, 9, 5, 1, 1, 6, 14, 10, 19, 14, 6, 1, 1, 7, 20, 24, 29, 33, 20, 7, 1, 1, 8, 27, 44, 29, 62, 53, 27, 8, 1, 1, 9, 35, 71, 73, 91, 115, 80, 35, 9, 1, 1, 10, 44, 106, 144, 164, 206, 195, 115, 44, 10, 1, 1, 11, 54, 150
Offset: 0

Views

Author

Clark Kimberling, Dec 08 2006

Keywords

Comments

T = transpose of A047110.

Examples

			Northwest corner:
1 1 1 1 1 1
1 1 2 3 4 5
1 2 2 5 9 14
1 3 5 10 10 24
1 4 9 19 29 29
		

Crossrefs

Cf. A047110.

A127832 Array T by antidiagonals: for h>=0 and k>=0, T(h,k)=number of UR paths from (0,0) to (h,k) that touch the line y=2x/3 only at lattice points. A UR path is a path of steps of length 1 each directed up or right.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 4, 5, 4, 3, 1, 1, 5, 9, 9, 7, 4, 1, 1, 6, 14, 18, 9, 11, 5, 1, 1, 7, 20, 32, 27, 11, 16, 6, 1, 1, 8, 27, 52, 59, 27, 27, 22, 7, 1, 1, 9, 35, 79, 111, 86, 54, 49, 29, 8, 1, 1, 10, 44, 114, 190, 197, 140, 103, 78, 37, 9, 1, 1, 11, 54, 158, 304, 387
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2007

Keywords

Examples

			Northwest corner:
0 1 1 1 1 1
1 1 2 3 4 5
1 1 2 5 9 14
1 2 4 9 18 32
1 3 7 9 27 59
The 4 UR paths for T(3,2) are RRRUU, RRURU, UURRR, URURR. These
paths touch the line y=2x/3 only at the lattice points (0,0) and (3,2).
		

Crossrefs

Previous Showing 11-15 of 15 results.