cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A191737 Dispersion of A047212, (numbers >1 and congruent to 0 or 2 or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 8, 12, 15, 17, 14, 11, 20, 25, 29, 24, 19, 13, 34, 42, 49, 40, 32, 22, 16, 57, 70, 82, 67, 54, 37, 27, 18, 95, 117, 137, 112, 90, 62, 45, 30, 21, 159, 195, 229, 187, 150, 104, 75, 50, 35, 23, 265, 325, 382, 312, 250, 174, 125, 84
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....4....7...12
3....5....9...15...25
6....10....17...29...49
8....14...24...40...67
11...19...32...54...90
13...22...37...62...104
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=4; c2=5; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047212 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191737 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191737  *)

A191738 Dispersion of A047222, (numbers >1 and congruent to 0 or 2 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 7, 6, 5, 12, 10, 9, 8, 20, 17, 15, 11, 13, 33, 28, 25, 18, 14, 22, 55, 47, 42, 30, 23, 16, 37, 92, 78, 70, 50, 38, 27, 19, 62, 153, 130, 117, 83, 63, 45, 32, 21, 103, 255, 217, 195, 138, 105, 75, 53, 35, 24, 172, 425, 362, 325, 230, 175, 125, 88
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....3....5....8
4....7....12...20...33
6....10...17...28...47
9....15...25...42...70
11...18...30...50...83
14...23...38...63...105
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=5; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047222 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191738 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191738  *)

A191739 Dispersion of A008854, (numbers >1 and congruent to 0 or 1 or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 16, 10, 6, 7, 29, 19, 11, 14, 8, 50, 34, 20, 25, 15, 12, 85, 59, 35, 44, 26, 21, 13, 144, 100, 60, 75, 45, 36, 24, 17, 241, 169, 101, 126, 76, 61, 41, 30, 18, 404, 284, 170, 211, 129, 104, 70, 51, 31, 22, 675, 475, 285, 354, 216, 175, 119
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....4....9....16...29
2....5....10...19...34
3....6....11...20...35
7....14...25...44...75
8....15...26...45...76
12...21...36...61...104
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=4; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A008854 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191739 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191739  *)

A191740 Dispersion of A047220, (numbers >1 and congruent to 0 or 1 or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 11, 10, 8, 7, 20, 18, 15, 13, 9, 35, 31, 26, 23, 16, 12, 60, 53, 45, 40, 28, 21, 14, 101, 90, 76, 68, 48, 36, 25, 17, 170, 151, 128, 115, 81, 61, 43, 30, 19, 285, 253, 215, 193, 136, 103, 73, 51, 33, 22, 476, 423, 360, 323, 228, 173, 123
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....3....6....11...20
2....5....10...18...31
4....8....15...26...45
7....13...23...40...68
9....16...28...48...81
12...21...36...61...103
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047220 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
      (* A191740 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191740  *)

A191741 Dispersion of A047217, (numbers >1 and congruent to 0 or 1 or 2 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 10, 11, 7, 8, 17, 20, 12, 15, 9, 30, 35, 21, 26, 16, 13, 51, 60, 36, 45, 27, 22, 14, 86, 101, 61, 76, 46, 37, 25, 18, 145, 170, 102, 127, 77, 62, 42, 31, 19, 242, 285, 171, 212, 130, 105, 71, 52, 32, 23, 405, 476, 286, 355, 217, 176, 120
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3, mod 4, or mod 5, see A191655, A191663, A191667, A191702.
...
Suppose that {2,3,4,5,6} is partitioned as {x1, x2} and {x3,x4,x5}. Let S be the increasing sequence of numbers >1 and congruent to x1 or x2 mod 5, and let T be the increasing sequence of numbers >1 and congruent to x3 or x4 or x5 mod 5. There are 10 sequences in S, each matched by a (nearly) complementary sequence in T. Each of the 20 sequences generates a dispersion, as listed here:
...
A191722=dispersion of A008851 (0, 1 mod 5 and >1)
A191723=dispersion of A047215 (0, 2 mod 5 and >1)
A191724=dispersion of A047218 (0, 3 mod 5 and >1)
A191725=dispersion of A047208 (0, 4 mod 5 and >1)
A191726=dispersion of A047216 (1, 2 mod 5 and >1)
A191727=dispersion of A047219 (1, 3 mod 5 and >1)
A191728=dispersion of A047209 (1, 4 mod 5 and >1)
A191729=dispersion of A047221 (2, 3 mod 5 and >1)
A191730=dispersion of A047211 (2, 4 mod 5 and >1)
A191731=dispersion of A047204 (3, 4 mod 5 and >1)
...
A191732=dispersion of A047202 (2,3,4 mod 5 and >1)
A191733=dispersion of A047206 (1,3,4 mod 5 and >1)
A191734=dispersion of A032793 (1,2,4 mod 5 and >1)
A191735=dispersion of A047223 (1,2,3 mod 5 and >1)
A191736=dispersion of A047205 (0,3,4 mod 5 and >1)
A191737=dispersion of A047212 (0,2,4 mod 5 and >1)
A191738=dispersion of A047222 (0,2,3 mod 5 and >1)
A191739=dispersion of A008854 (0,1,4 mod 5 and >1)
A191740=dispersion of A047220 (0,1,3 mod 5 and >1)
A191741=dispersion of A047217 (0,1,2 mod 5 and >1)
...
For further information about these 20 dispersions, see A191722.
...
Regarding the dispersions A191722-A191741, there are general formulas for sequences of the type "(a or b mod m)" and "(a or b or c mod m)" used in the relevant Mathematica programs.

Examples

			Northwest corner:
1....2....5....10...17
3....6....11...20...35
4....7....12...21...36
8....15...26...45...76
9....16...27...46...77
13...22...37...62...105
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array t of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=5; c2=6; m[n_]:=If[Mod[n,3]==0,1,0];
    f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3]
    Table[f[n], {n, 1, 30}]  (* A047217 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191741 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191741  *)

A047203 Numbers that are congruent to {0, 2, 3, 4} mod 5.

Original entry on oeis.org

0, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 57, 58, 59, 60, 62, 63, 64, 65, 67, 68, 69, 70, 72, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 87, 88, 89
Offset: 1

Views

Author

Keywords

Comments

Complement of A016861. - Reinhard Zumkeller, Oct 23 2006

Crossrefs

Programs

Formula

A027445(a(n)) mod 10 = 0. - Reinhard Zumkeller, Oct 23 2006
a(n) = floor((5n-2)/4). - Gary Detlefs, Mar 06 2010
a(n) = floor((15n-5)/12). - Gary Detlefs, Mar 07 2010
G.f.: x^2*(2+x+x^2+x^3)/((1+x)*(1+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 14 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-7+(-1)^n+2*(-1)^((2*n+3+(-1)^n)/4))/8.
a(2n) = A047211(n), a(2n-1) = A047218(n).
a(n) = A047207(n+1) - 1.
a(n+2) = n + 2 + A002265(n) for n>0.
a(n+3)-a(n+2) = A177704(n) for n>0.
a(1-n) = - A001068(n). (End)
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 - sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021

Extensions

More terms from Reinhard Zumkeller, Oct 23 2006

A301564 Expansion of Product_{k>=0} (1 + x^(5*k+2))*(1 + x^(5*k+4)).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 2, 0, 2, 1, 2, 2, 1, 3, 1, 3, 3, 2, 5, 2, 6, 3, 5, 6, 4, 8, 5, 8, 8, 7, 12, 7, 13, 11, 11, 16, 11, 19, 14, 19, 21, 17, 27, 20, 27, 28, 26, 36, 28, 40, 37, 38, 49, 39, 55, 49, 55, 64, 55, 76, 65, 78, 84, 78, 100, 87, 107, 109, 107, 134, 116, 145
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 2 or 4 mod 5.

Examples

			a(16) = 3 because we have [14, 2], [12, 4] and [9, 7].
		

Crossrefs

Programs

  • Mathematica
    nmax = 74; CoefficientList[Series[Product[(1 + x^(5 k + 2)) (1 + x^(5 k + 4)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 74; CoefficientList[Series[QPochhammer[-x^2, x^5] QPochhammer[-x^4, x^5], {x, 0, nmax}], x]
    nmax = 74; CoefficientList[Series[Product[(1 + Boole[MemberQ[{2, 4}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A047211(k)).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(29/20) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

A053685 Primes p > 7 which are congruent to 2 or 4 (mod 5) for which 2p-1 is also prime.

Original entry on oeis.org

19, 37, 79, 97, 139, 157, 199, 229, 307, 337, 367, 379, 439, 499, 547, 577, 607, 619, 727, 829, 877, 937, 967, 997, 1009, 1069, 1237, 1279, 1297, 1399, 1429, 1459, 1609, 1627, 1657, 1759, 1867, 2029, 2089, 2137, 2179, 2467, 2539, 2557, 2617, 2707, 2719
Offset: 1

Views

Author

James Sellers, Feb 15 2000

Keywords

Comments

For such primes p, 2p-1 divides Fibonacci(p). Actually it is also true that (2m-1) divides Fibonacci(m) for *all* m > 7, m = 2 or 4 (mod 5) for which 2m-1 is prime.
Intersection of A047211 and A005382 without terms <= 7. - Reinhard Zumkeller, Oct 03 2012

Examples

			Note that 19 is prime and so is 2*19-1 or 37.
		

Crossrefs

Cf. A000045.

Programs

  • Haskell
    a053685 n = a053685_list !! (n-1)
    a053685_list = dropWhile (<= 7) $ i a047211_list a005382_list where
       i xs'@(x:xs) ys'@(y:ys) | x < y     = i xs ys'
                               | x > y     = i xs' ys
                               | otherwise = x : i xs ys
    -- Reinhard Zumkeller, Oct 03 2012
  • Mathematica
    okQ[n_]:=Module[{x=Mod[n,5]},PrimeQ[2n-1]&&MemberQ[{2,4},x]]; Select[Prime[Range[5,500]],okQ]  (* Harvey P. Dale, Jan 14 2011 *)

A224996 a(n) = floor(1/f(x^(1/n))) for x = 2, where f computes the fractional part.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 45, 47, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97
Offset: 2

Views

Author

T. D. Noe, Apr 26 2013

Keywords

Comments

First denominator of continued fraction representing 2^(1/n): [1,a(n),....] so that 1+1/a(n) is first convergent for 2^(1/n). - Carmine Suriano, Apr 29 2014
a(n) is the largest integer y that satisfies (y+1)^n - y^n >= y^n, or equivalently (y+1)^n >= 2*y^n. - Charles Kusniec, Jan 19 2025

Crossrefs

Cf. A078607 (the smallest integer y that satisfies (y+1)^n - y^n < y^n).

Programs

  • Mathematica
    th = 2; t = Table[Floor[1/FractionalPart[th^(1/n)]], {n, 2, 100}]

Formula

a(n) = floor(n/log(2)-1/2). - Andrey Zabolotskiy, Dec 01 2017

A224995 Floor(1/f(x^(1/n))) for x = 3/2, where f computes the fractional part.

Original entry on oeis.org

2, 4, 6, 9, 11, 14, 16, 19, 21, 24, 26, 29, 31, 34, 36, 38, 41, 43, 46, 48, 51, 53, 56, 58, 61, 63, 66, 68, 71, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 112, 115, 117, 120, 122, 125, 127, 130, 132, 135, 137, 140, 142, 145, 147, 149
Offset: 1

Views

Author

T. D. Noe, Apr 26 2013

Keywords

Crossrefs

Programs

  • Mathematica
    th = 3/2; t = Table[Floor[1/FractionalPart[th^(1/n)]], {n, 100}]

Formula

a(n) = floor(n/log(3/2)-1/2) for n>1. - Andrey Zabolotskiy, Dec 01 2017
Previous Showing 21-30 of 34 results. Next