cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A279403 Irregular triangle read by rows: T(n,k) (n>=1, 0 <= k <= n^2) = minimal number of squares not attacked by k queens on an n X n toroidal board, with trailing zeros truncated.

Original entry on oeis.org

1, 4, 9, 16, 4, 25, 8, 2, 36, 16, 4, 49, 24, 11, 4, 64, 36, 16, 6, 81, 48, 27, 12, 3, 100, 64, 36, 19, 4, 121, 80, 51, 29, 13, 144, 100, 64, 39, 16, 6, 169, 120, 83, 53, 29, 8, 2, 196, 144, 100, 67, 36, 18, 8, 225, 168, 223, 82, 41, 256, 196, 144, 103, 64, 40
Offset: 1

Views

Author

Andrey Zabolotskiy, Dec 11 2016

Keywords

Comments

Row lengths are A279402.

Examples

			The triangle begins:
1 (0)
4 (0, 0, 0, 0)
9 (0, 0, ...)
16 4 (0, 0, ...)
25 8 2
36 16 4
49 24 11 4
64 36 16 6
81 48 27 12 3
100 64 36 19 4
121 80 51 29 13
144 100 64 39 16 6
169 120 83 53 29 8 2
196 144 100 67 36 18 8
225 168 123 82 41
256 196 144 103 64 40 ...
		

Crossrefs

Formula

T(n,0) = A000290(n).
T(n,1) = A000290(n)-A047461(n) = A137932(n-1).
T(n,2) = A248825(n-4) for n >= 6.

A047411 Numbers that are congruent to {1, 2, 4, 6} mod 8.

Original entry on oeis.org

1, 2, 4, 6, 9, 10, 12, 14, 17, 18, 20, 22, 25, 26, 28, 30, 33, 34, 36, 38, 41, 42, 44, 46, 49, 50, 52, 54, 57, 58, 60, 62, 65, 66, 68, 70, 73, 74, 76, 78, 81, 82, 84, 86, 89, 90, 92, 94, 97, 98, 100, 102, 105, 106, 108, 110, 113, 114, 116, 118, 121, 122, 124, 126, 129, 130
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [1, 2, 4, 6]]; // Wesley Ivan Hurt, May 22 2016
  • Maple
    A047411 := proc(n) if n <= 4 then op(n,[1,2,4,6]); else procname(n-4)+8; end if; end proc: seq(A047411(n), n=1..99); # R. J. Mathar, Feb 11 2010
  • Mathematica
    Table[(8n-7-I^(2n)+I^(1-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 22 2016 *)
    LinearRecurrence[{1,0,0,1,-1}, {1,2,4,6,9}, 50] (* G. C. Greubel, May 23 2016 *)

Formula

From R. J. Mathar, Mar 10 2008: (Start)
a(n) = a(n-4)+8.
O.g.f.: 2/(-1+x)^2+1/(2*(x^2+1))+7/(4*(-1+x))+1/(4*(x+1)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. - R. J. Mathar, Feb 11 2010
From Wesley Ivan Hurt, May 22 2016: (Start)
a(n) = (8*n-7-i^(2*n)+i^(1-n)-i^(1+n))/4 where i=sqrt(-1).
a(2*n+2) = A016825(n) n>0, a(2*n-1) = A047461(n). (End)
E.g.f.: (4 + sin(x) + (4*x - 3)*sinh(x) + 4*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 23 2016
a(n) = (8*n-7-cos(n*Pi)+2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 05 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - sqrt(2)*log(3-2*sqrt(2))/16. - Amiram Eldar, Dec 23 2021

Extensions

Extended by R. J. Mathar, Feb 11 2010

A047460 Numbers that are congruent to {0, 1, 3, 4} mod 8.

Original entry on oeis.org

0, 1, 3, 4, 8, 9, 11, 12, 16, 17, 19, 20, 24, 25, 27, 28, 32, 33, 35, 36, 40, 41, 43, 44, 48, 49, 51, 52, 56, 57, 59, 60, 64, 65, 67, 68, 72, 73, 75, 76, 80, 81, 83, 84, 88, 89, 91, 92, 96, 97, 99, 100, 104, 105, 107, 108, 112, 113, 115, 116, 120, 121, 123
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0, 1, 3, 4, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 16 2012
    
  • Maple
    A047460:=n->(-1/4+I/4)*((6+6*I)+(1+I)*I^(2*n)+(-I)^n+I*I^n)+2*n: seq(A047460(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,3000], MemberQ[{0,1,3,4}, Mod[#,8]]&] (* Vincenzo Librandi, May 16 2012 *)
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(x^2*(1+2*x+x^2+4*x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015

Formula

From Colin Barker, May 14 2012: (Start)
a(n) = (-1/4+i/4)*((6+6*i)+(1+i)*(-1)^n+(-i)^n+i*i^n)+2*n where i=sqrt(-1).
G.f.: x^2*(1+2*x+x^2+4*x^3)/((1-x)^2*(1+x)*(1+x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 16 2012
a(2k) = A047461(k), a(2k-1) = A047470(k). - Wesley Ivan Hurt, Jun 01 2016
Sum_{n>=2} (-1)^n/a(n) = Pi/8 + (2-sqrt(2))*log(2)/8 + sqrt(2)*log(2+sqrt(2))/4. - Amiram Eldar, Dec 20 2021

A047544 Numbers that are congruent to {1, 3, 4, 7} mod 8.

Original entry on oeis.org

1, 3, 4, 7, 9, 11, 12, 15, 17, 19, 20, 23, 25, 27, 28, 31, 33, 35, 36, 39, 41, 43, 44, 47, 49, 51, 52, 55, 57, 59, 60, 63, 65, 67, 68, 71, 73, 75, 76, 79, 81, 83, 84, 87, 89, 91, 92, 95, 97, 99, 100, 103, 105, 107, 108, 111, 113, 115, 116, 119, 121, 123, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [1, 3, 4, 7]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    A047544:=n->(8*n-5+I^(2*n)+I^(1-n)-I^(1+n))/4: seq(A047544(n), n=1..100); # Wesley Ivan Hurt, May 29 2016
  • Mathematica
    Table[(8n-5+I^(2n)+I^(1-n)-I^(1+n))/4, {n, 80}] (* Wesley Ivan Hurt, May 29 2016 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 4, 7, 9}, 50] (* G. C. Greubel, May 29 2016 *)

Formula

From Wesley Ivan Hurt, May 29 2016: (Start)
G.f.: x*(1+2*x+x^2+3*x^3+x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-5+i^(2*n)+i^(1-n)-i^(1+n))/4 where i=sqrt(-1).
a(2k) = A004767(k-1) for n>0, a(2k-1) = A047461(k). (End)
E.g.f.: (2 + sin(x) + (4*x - 3)*sinh(x) + (4*x - 2)*cosh(x))/2. - Ilya Gutkovskiy, May 29 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+3)*Pi/16 - log(2)/4 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 24 2021

A047600 Numbers that are congruent to {1, 3, 4, 5} mod 8.

Original entry on oeis.org

1, 3, 4, 5, 9, 11, 12, 13, 17, 19, 20, 21, 25, 27, 28, 29, 33, 35, 36, 37, 41, 43, 44, 45, 49, 51, 52, 53, 57, 59, 60, 61, 65, 67, 68, 69, 73, 75, 76, 77, 81, 83, 84, 85, 89, 91, 92, 93, 97, 99, 100, 101, 105, 107, 108, 109, 113, 115, 116, 117, 121, 123, 124
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [1..120] | n mod 8 in [1,3,4,5]];
    
  • Maple
    A047600:=n->2*n-1-(3+I^(2*n))*(1+I^(n*(n+1)))/4: seq(A047600(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
  • Mathematica
    Select[Range[120], MemberQ[{1,3,4,5}, Mod[#,8]]&]  (* Harvey P. Dale, Mar 09 2011 *)
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 4, 5, 9}, 60] (* Bruno Berselli, Jul 17 2012 *)
  • Maxima
    makelist(2*n-1-(3+(-1)^n)*(1+%i^(n*(n+1)))/4,n,1,60);
    
  • PARI
    Vec((1+2*x+x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2))+O(x^60)) (End)

Formula

From Bruno Berselli, Jul 17 2012: (Start)
G.f.: x*(1+2*x+x^2+x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = 2*n-1 -(3+(-1)^n)*(1+i^(n*(n+1)))/4, where i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = A047621(k), a(2k-1) = A047461(k). (End)
E.g.f.: (6 + sin(x) - 2*cos(x) + (4*x - 3)*sinh(x) + 4*(x - 1)*cosh(x))/2. - Ilya Gutkovskiy, Jun 03 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 - (4+3*sqrt(2))*log(2)/16 + 3*sqrt(2)*log(sqrt(2)+2)/8. - Amiram Eldar, Dec 24 2021

A369801 Maximum number of segments between n points on a circle so that they can be colored in 2 colors so that each of them intersects (at an internal point) at most one other segment of the same color.

Original entry on oeis.org

1, 3, 6, 10, 15, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, 64, 67, 72, 75, 80, 83, 88, 91, 96, 99, 104, 107, 112, 115, 120, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 171, 176, 179, 184, 187, 192, 195, 200, 203, 208, 211, 216, 219, 224, 227
Offset: 2

Views

Author

Mladen Valkov, Feb 01 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[ -x^2*(x^7-2*x^4-2*x^3-2*x^2-2*x-1)/((x+1)*(x-1)^2),{x,0,59}],x],2] (* James C. McMahon, Mar 08 2024 *)
  • Python
    def A369801(n): return (n-2<<2)-(n&1) if n>=7 else (1, 3, 6, 10, 15)[n-2] # Chai Wah Wu, Mar 30 2024

Formula

a(n) = n*(n-1)/2 for n<=6, a(2*k+1) = 8*k-5 if k>=3, a(2*k) = 8*k-8 if k>=4.
G.f.: -x^2*(x^7-2*x^4-2*x^3-2*x^2-2*x-1)/((x+1)*(x-1)^2).
a(n) = A047452(n-2) + 2 = A047461(n-1) - 1 for n >= 7. - Hugo Pfoertner, Feb 05 2024

A109534 a(0)=1, a(n)=n+a(n-1) if n mod 2=0, a(n)=3n-a(n-1) if n mod 2 = 1.

Original entry on oeis.org

1, 2, 4, 5, 9, 6, 12, 9, 17, 10, 20, 13, 25, 14, 28, 17, 33, 18, 36, 21, 41, 22, 44, 25, 49, 26, 52, 29, 57, 30, 60, 33, 65, 34, 68, 37, 73, 38, 76, 41, 81, 42, 84, 45, 89, 46, 92, 49, 97, 50, 100, 53, 105, 54, 108, 57, 113, 58, 116, 61, 121, 62, 124, 65, 129, 66, 132, 69, 137
Offset: 0

Views

Author

Roger L. Bagula, Jun 18 2005

Keywords

Programs

  • Maple
    a:=proc(n) if n=0 then 1 elif n mod 2=0 then n+a(n-1) else 3*n-a(n-1) fi end: seq(a(n),n=0..68);
  • Mathematica
    a[0] = 1; a[n_] := a[n] = If[Mod[n, 2] == 0, a[n - 1] + n, -a[n - 1] + 3*n] aa = Table[a[n], {n, 0, 100}]

Formula

G.f.: (1+2x+3x^2+3x^3+4x^4-x^5)/((1+x^2)(1-x)^2(1+x)^2). a(n)=a(n-2)+a(n-4)-a(n-6). a(2n)=A047461(n+1). a(2n+1)=A042963(n+1). [From R. J. Mathar, Oct 29 2008]
Previous Showing 21-27 of 27 results.