cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A375915 Composite numbers k == 1, 9 (mod 10) such that 5^((k-1)/2) == 1 (mod k).

Original entry on oeis.org

781, 1541, 1729, 5461, 5611, 6601, 7449, 11041, 12801, 13021, 14981, 15751, 15841, 21361, 24211, 25351, 29539, 38081, 40501, 41041, 44801, 47641, 53971, 67921, 75361, 79381, 90241, 100651, 102311, 104721, 106201, 106561, 112141, 113201, 115921, 133141, 135201, 141361
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 5^((k-1)/2) == (5/k) = 1 (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			29539 is a term because 29539 = 109*271 is composite, 29539 == 9 (mod 10), and 5^((29539-1)/2) == 1 (mod 29539).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | this seq |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375915(k) = (k>1) && !isprime(k) && (k%10==1 || k%10==9) && Mod(5,k)^((k-1)/2) == 1

A375916 Composite numbers k == 3, 7 (mod 10) such that 5^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

7813, 121463, 195313, 216457, 315283, 319507, 353827, 555397, 559903, 753667, 939727, 1164083, 1653667, 1663213, 1703677, 1809697, 1958503, 2255843, 2339377, 2423323, 2942333, 2987167, 3313643, 4265257, 4635053, 5376463, 5979247, 6611977, 7784297, 7859707
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 5^((k-1)/2) == (5/k) = -1 (mod k), where (5/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			216457 is a term because 216457 = 233*929 is a composite, 216457 == 7 (mod 10), and 5^((216457-1)/2) == -1 (mod 216457).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+---------+----------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+---------+----------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | this seq |
-----------------------------------+-------------------+---------+----------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+---------+----------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+---------+----------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375916(k) = !isprime(k) && (k%10==3 || k%10==7) && Mod(5,k)^((k-1)/2) == -1

A375917 Composite numbers k == 1, 11 (mod 12) such that 3^((k-1)/2) == 1 (mod k).

Original entry on oeis.org

121, 1729, 2821, 7381, 8401, 10585, 15457, 15841, 18721, 19345, 23521, 24661, 28009, 29341, 31621, 41041, 46657, 47197, 49141, 50881, 52633, 55969, 63973, 74593, 75361, 82513, 87913, 88573, 93961, 111361, 112141, 115921, 125665, 126217, 138481, 148417, 172081
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = 1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).
It seems that most terms are congruent to 1 modulo 12. The first terms congruent to 11 modulo 12 are 1683683, 1898999, 2586083, 2795519, 4042403, 4099439, 5087171, 8243111, ...

Examples

			1683683 is a term because 1683683 = 59*28537 is composite, 1683683 == 11 (mod 12), and 3^((1683683-1)/2) == 1 (mod 1683683).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | this seq | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | A375918 | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375917(k) = (k>1) && !isprime(k) && (k%12==1 || k%12==11) && Mod(3,k)^((k-1)/2) == 1

A375918 Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

703, 1891, 3281, 8911, 12403, 16531, 44287, 63139, 79003, 97567, 105163, 152551, 182527, 188191, 211411, 218791, 288163, 313447, 320167, 364231, 385003, 432821, 453259, 497503, 563347, 638731, 655051, 658711, 801139, 859951, 867043, 973241, 994507, 1024651, 1097227
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | this seq | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3,k)^((k-1)/2) == -1

A270698 Composite numbers k == 1 (mod 4) such that (1 + i)^k == 1 + i (mod k), where i = sqrt(-1).

Original entry on oeis.org

561, 1105, 1729, 1905, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 29341, 30121, 33153, 34945, 41041, 46657, 49141, 52633, 62745, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 104653, 113201, 115921, 126217, 129921
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Sep 05 2018: (Start)
Numbers in A047713 that are congruent to 1 mod 4. Most terms are congruent to 1 mod 8. For terms congruent to 5 mod 8, see A244626.
Also composite k == 1 (mod 4) such that (-4)^((k-1)/4) == 1 (mod k). Note that this is satisfied by all primes == 1 (mod 4), see A318898. (End)

Crossrefs

Subsequence of A001567 and A047713.
A244626 is a proper subsequence.

Programs

  • Mathematica
    Select[1 + 4*Range[100000], PrimeQ[#] == False && PowerMod[1 + I, #, #] == 1 + I &]
  • PARI
    forstep(n=5, 10^5, 4, if(Mod(2, n)^((n-1)/2)==kronecker(2, n) && !isprime(n), print1(n, ", "))) \\ Jianing Song, Sep 06 2018

A270697 Composite numbers k == 3 (mod 4) such that (1 + i)^k == 1 - i (mod k), where i = sqrt(-1).

Original entry on oeis.org

2047, 42799, 90751, 256999, 271951, 476971, 514447, 741751, 877099, 916327, 1302451, 1325843, 1397419, 1441091, 1507963, 1530787, 1907851, 2004403, 2205967, 2304167, 2748023, 2811271, 2953711, 2976487, 3090091, 3116107, 4469471, 4863127, 5016191
Offset: 1

Views

Author

Keywords

Comments

Composite k == 3 (mod 4) such that 2*(-4)^((k-3)/4) == -1 (mod k). - Robert Israel, Mar 21 2016
2*(-4)^((p-3)/4) == -1 (mod p) is satisfied by all primes p == 3 (mod 4), see A318908. - Jianing Song, Sep 05 2018
Numbers in A047713 that are congruent to 3 mod 4. Most terms are congruent to 7 mod 8. For terms congruent to 3 mod 8, see A244628. - Jianing Song, Sep 05 2018
Question: Is this a subsequence of A001262? I have verified that it contains all terms up to 2^64. - Joseph M. Shunia, Jul 02 2019

Crossrefs

Subsequence of A001567 and A047713.
A244628 is a proper subsequence.

Programs

  • Maple
    select(t -> not isprime(t) and 1 + 2*(-4) &^ ((t-3)/4) mod t = 0, [seq(i, i=7..10^7, 4)]); # Robert Israel, Mar 21 2016
  • Mathematica
    Select[3 + 4*Range[10000000], PrimeQ[#] == False && PowerMod[1 + I, #, #] == Mod[1 - I, #] &]
  • PARI
    forstep(n=3, 10^7, 4, if(Mod(2, n)^((n-1)/2)==kronecker(2, n) && !isprime(n), print1(n, ", ")))

A307767 The "non-residue" pseudoprimes: odd composite numbers n such that b(n)^((n-1)/2) == -1 (mod n), where base b(n) = A020649(n).

Original entry on oeis.org

3277, 3281, 29341, 49141, 80581, 88357, 104653, 121463, 196093, 314821, 320167, 458989, 476971, 489997, 491209, 721801, 800605, 838861, 873181, 877099, 973241, 1004653, 1251949, 1268551, 1302451, 1325843, 1373653, 1397419, 1441091, 1507963, 1509709, 1530787, 1590751, 1678541, 1809697
Offset: 1

Views

Author

Thomas Ordowski, Apr 27 2019

Keywords

Comments

As is well known, for an odd prime p, b(p) is the smallest quadratic non-residue b modulo p if and only if b(p) is the smallest base b such that b^((p-1)/2) == -1 (mod p). Note that b(n) is always a prime.
Conjecture: If 2^((n-1)/2) == -1 (mod n), then b(n) = 2, where b(n) as above. This is true for odd primes n; is it for odd composites n? If so, then all composite numbers n such that 2^((n-1)/2) == -1 (mod n) are in this sequence.
It seems that, for defined pseudoprimes n (similar to the odd primes p),
b(n) is the smallest base b such that b^((n-1)/2) == -1 (mod n), although this is not required by their definition.
Note: a "non-residue" pseudoprime n is a strong pseudoprime to base b(n); the Jacobi symbol (b(n)/n) = -1, where b(n) is the smallest non-residue modulo n; such a pseudoprime n is not a Proth number, so n = k*2^m + 1 with odd k > 2^m.
Problem: are there infinitely many such numbers?

Examples

			2^((3277-1)/2) == -1 (mod 3277), 3^((3281-1)/2) == -1 (mod 3281), ...
		

Crossrefs

Cf. A001262, A006970, A020649, A047713, A053760, A244626, A307798 (the "residue" pseudoprimes), A307809.

Programs

  • Mathematica
    residueQ[n_, m_] := Module[{ans = 0}, Do[If[Mod[k^2, m] == n, ans = True; Break[]], {k, 0, Floor[m/2]}]; ans]; A020649[n_] := Module[{m = 0}, While[ residueQ[m, n], m++]; m]; aQ[n_] := CompositeQ[n] && PowerMod[A020649[n], ((n - 1)/2), n] == n - 1; Select[Range[3, 110000, 2], aQ] (* Amiram Eldar, Apr 27 2019 *)

Extensions

More terms from Amiram Eldar, Apr 27 2019

A329726 Number of witnesses for Solovay-Strassen primality test of 2*n+1.

Original entry on oeis.org

2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 4, 46, 6, 2, 52, 2, 2, 58, 60, 2, 8, 66, 2, 70, 72, 2, 2, 78, 2, 82, 8, 2, 88, 18, 2, 2, 96, 2, 100, 102, 8, 106, 108, 2, 112, 2, 4, 2, 10, 2, 4, 126, 2, 130, 18, 2, 136, 138, 2, 2, 8, 2
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2019

Keywords

Comments

Number of bases b, 1 <= b <= 2*n, such that GCD(b, 2*n+1) = 1 and b^n == (b / 2*n+1) (mod 2*n+1), where (b / 2*n+1) is a Jacobi symbol.
If 2*n+1 is composite then it is the number of bases b, 1 <= b <= 2*n, in which 2*n+1 is an Euler-Jacobi pseudoprime.
Differs from A071294 from n = 22.

Examples

			a(1) = 2 since there are 2 bases b in which 2*1 + 1 = 3 is an Euler-Jacobi pseudoprime: b = 1 since GCD(1, 3) = 1 and 1^1 == (1 / 3) == 1 (mod 3), and b = 2 since GCD(2, 3) = 1 and 2^1 == (2 / 3) == -1 (mod 3).
		

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004, p. 96.

Crossrefs

Programs

  • Mathematica
    v[n_] := Min[IntegerExponent[#, 2]& /@ (FactorInteger[n][[;;, 1]] - 1)];
    pQ[n_, p_] := OddQ[IntegerExponent[n, p]] && IntegerExponent[p-1, 2] < IntegerExponent[n-1, 2];
    psQ[n_] := AnyTrue[FactorInteger[n][[;;, 1]], pQ[n, #] &];
    delta[n_] := If[IntegerExponent[n-1, 2] == v[n], 2, If[psQ[n], 1/2, 1]];
    a[n_] := delta[n] * Module[{p = FactorInteger[n][[;;, 1]]}, Product[GCD[(n-1)/2, p[[k]]-1], {k, 1, Length[p]}]];
    Table[a[n], {n, 3, 147, 2}]

Formula

a(n) = delta(n) * Product_{p|n} gcd((n-1)/2, p-1), where delta(n) = 2 if nu(n-1, 2) = min_{p|n} nu(p-1, 2), 1/2 if there is a prime p|n such that nu(p, n) is odd and nu(p-1, 2) < nu(n-1, 2), and 1 otherwise, where nu(n, p) is the exponent of the highest power of p dividing n.
a(p) = p-1 for prime p.

A326614 Smallest Euler-Jacobi pseudoprime to base n.

Original entry on oeis.org

9, 561, 121, 341, 781, 217, 25, 9, 91, 9, 133, 91, 85, 15, 1687, 15, 9, 25, 9, 21, 221, 21, 169, 25, 217, 9, 121, 9, 15, 49, 15, 25, 545, 33, 9, 35, 9, 39, 133, 39, 21, 451, 21, 9, 481, 9, 65, 49, 25, 49, 25, 51, 9, 55, 9, 55, 25, 57, 15, 481, 15, 9, 529, 9, 33, 65, 33, 25, 35, 69, 9
Offset: 1

Views

Author

Richard N. Smith, Jul 14 2019

Keywords

Comments

a(n) = 9 for n == 1 or 8 mod 9 (see A056020).

Crossrefs

Cf. A047713, A048950, A090086 (least Fermat pseudoprime to base n), A298756 (least strong pseudoprime to base n).

Programs

  • Mathematica
    ejpspQ[n_,b_] := CoprimeQ[n,b] && CompositeQ[n] && Mod[b^((n - 1)/2) - JacobiSymbol[b, n], n] == 0; leastEJpsp[b_] := Module[{k=9}, While[!ejpspQ[k, b], k+=2]; k]; Array[leastEJpsp, 100] (* Amiram Eldar, Jul 15 2019 *)
  • PARI
    isok(k, n) = ((k%2==1) && (gcd(k, n)==1) && Mod(n, k)^((k-1)/2)==kronecker(n, k) && !isprime(k));
    a(n) = my(k=2); while (! isok(k, n), k++); k; \\ Michel Marcus, Jul 15 2019

A354692 Smallest Euler-Jacobi pseudoprime to all natural bases up to prime(n) - 1 that is not a base prime(n) Euler-Jacobi pseudoprime.

Original entry on oeis.org

9, 561, 10585, 1729, 488881, 399001, 2433601, 1857241, 6189121, 549538081, 50201089, 14469841, 86566959361, 311963097601, 369838909441, 31929487861441, 6389476833601, 8493512837546881, 31585234281457921, 10120721237827201, 289980482095624321, 525025434548260801, 91230634325542321
Offset: 1

Views

Author

Jinyuan Wang, Jun 03 2022

Keywords

Comments

An Euler-Jacobi pseudoprime to the base b is an odd composite number k such that gcd(b, k) = 1 and the Jacobi symbol (.,.) satisfies b^((k-1)/2) == (b,k) (mod k).
a(n) is coprime to A002110(n-1).
a(24) > 2^64. - Daniel Suteu, Jun 05 2022

Crossrefs

Programs

  • PARI
    a(n) = my(b, p=factorback(primes(n-1))); forcomposite(k=9, oo, if(gcd(k, p)==1, b=2; while(Mod(b, k)^(k\2) == kronecker(b, k), b++); if(b==prime(n), return(k))));

Extensions

a(13)-a(23) from Daniel Suteu, Jun 05 2022
Previous Showing 11-20 of 20 results.