cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A196792 a(n) = A047848(10, n).

Original entry on oeis.org

1, 2, 15, 184, 2381, 30942, 402235, 5229044, 67977561, 883708282, 11488207655, 149346699504, 1941507093541, 25239592216022, 328114698808275, 4265491084507564, 55451384098598321, 720867993281778162, 9371283912663116095, 121826690864620509224, 1583746981240066619901
Offset: 0

Views

Author

Vincenzo Librandi, Oct 11 2011

Keywords

Crossrefs

Cf. A001022 (first differences).

Programs

  • Magma
    [(13^n+11)/12: n in [0..20]];
    
  • Mathematica
    (13^Range[0,40] +11)/12 (* G. C. Greubel, Jan 17 2025 *)
  • Python
    def A196792(n): return (pow(13, n) + 11)//12
    print([A196792(n) for n in range(41)]) # G. C. Greubel, Jan 17 2025

Formula

a(n) = (13^n + 11)/12.
a(n) = 13*a(n-1) - 11, with a(0) = 1.
G.f.: (1-12*x)/((1-x)*(1-13*x)). - Bruno Berselli, Oct 11 2011
From Elmo R. Oliveira, Aug 30 2024: (Start)
E.g.f.: exp(x)*(exp(12*x) + 11)/12.
a(n) = 14*a(n-1) - 13*a(n-2) for n > 1. (End)

A196793 a(n) = A047848(n, n).

Original entry on oeis.org

1, 2, 7, 44, 401, 4682, 66431, 1111112, 21435889, 469070942, 11488207655, 311505013052, 9267595563617, 300239975158034, 10523614159962559, 396861212733968144, 16024522975978953761, 689852631578947368422, 31544039619835776489479
Offset: 0

Views

Author

Vincenzo Librandi, Oct 11 2011

Keywords

Crossrefs

Programs

Formula

a(n) = ((n+3)^n + n + 1)/(n+2).

A305753 A base-3/2 sorted Fibonacci sequence that starts with a(0) = 0 and a(1) = 1. The terms are interpreted as numbers written in base 3/2. To get a(n+2), add a(n) and a(n+1), write the result in base 3/2 and sort the "digits" into increasing order, omitting all zeros.

Original entry on oeis.org

0, 1, 1, 2, 2, 12, 12, 112, 112, 1112, 1112, 11112, 11112, 111112, 111112, 1111112, 1111112, 11111112, 11111112, 111111112, 111111112, 1111111112, 1111111112, 11111111112, 11111111112, 111111111112, 111111111112, 1111111111112, 1111111111112, 11111111111112, 11111111111112
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, Jun 09 2018

Keywords

Comments

In base 10, the corresponding sequence is A069638 and is periodic.

Examples

			Write decimal numbers as x_10, base-3/2 numbers as x_b (see A024629).
We have a(1) = 1, a(2) = 2 (in both bases).
Adding, we get 1+2 = 3_10 = 20_b, and sorting the digits gives a(3) = 2_b = 2_10.
Adding 2 and 2 we get 4_10 = 21_b, and sorting the digits gives a(4) = 12_b = (7/2)_10.
Adding 2 and 7/2 we get (11/2)_10 = 201_b, and sorting the digits gives a(5) = 12_b = (7/2)_10.
Adding (7/2)_10 and (7/2)_10 we get 7_10 = 211_b, and sorting the digits gives a(6) = 112_b = (23/4)_10.
Adding (7/2)_10 and (23/4)_10 we get (37/4)_10 = 2011_b, and sorting the digits gives a(7) = 112_b = (23/4)_10.
And so on.
		

Crossrefs

This is A047855 with terms repeated. - N. J. A. Sloane, Jun 19 2018

Programs

  • PARI
    concat(0, Vec(x*(1 - 3*x)*(1 + 3*x) / ((1 - x)*(1 - 10*x^2)) + O(x^40))) \\ Colin Barker, Jun 19 2018

Formula

From Colin Barker, Jun 14 2018: (Start)
Generating function: x*(1 - 3*x)*(1 + 3*x) / ((1 - x)*(1 - 10*x^2)).
a(n) = (10^(n/2) + 80) / 90 for n>0.
a(n) = (10^((n-1)/2) + 8) / 9 for n>0.
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n>4.
(End)

Extensions

Edited by N. J. A. Sloane, Jun 22 2018

A309908 a(n) is 2^n represented in bijective base-9 numeration.

Original entry on oeis.org

1, 2, 4, 8, 17, 35, 71, 152, 314, 628, 1357, 2725, 5551, 12212, 24424, 48848, 98797, 218715, 438531, 878162, 1867334, 3845668, 7792447, 16694895, 34499911, 69121922, 149243944, 299487988, 619987187, 1342185385, 2684381781, 5478773672, 11968657454, 24148425918
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2019

Keywords

Comments

Differs from A001357 first at n = 16: a(16) = 98797 < 108807 = A001357(16).

Examples

			a(10) =  1357_bij9 =       9*(9*(9*1+3)+5)+7 =  1024 = 2^10.
a(16) = 98797_bij9 = 9*(9*(9*(9*9+8)+7)+9)+7 = 65536 = 2^16.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) local d, l, m; m:= n; l:= "";
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi; l:= d, l
          od; parse(cat(l))
        end:
    a:= n-> b(2^n):
    seq(a(n), n=0..33);

Formula

a(n) = A052382(2^n) = A052382(A000079(n)).

A073557 Number of Fibonacci numbers F(k), k <= 10^n, whose initial digit is 1.

Original entry on oeis.org

3, 30, 301, 3011, 30103, 301031, 3010300, 30103001, 301029995, 3010299957, 30102999568
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 15 2002

Keywords

Examples

			a(2) = 30 because there are 30 Fibonacci numbers up to 10^2 whose initial digit is 1.
		

Crossrefs

Cf. A000045, A047855 (numbers of integers <= 10^n, whose initial digit is 1).

Programs

  • PARI
    default(realprecision, 10^4); m=log((1+sqrt(5))/2);
    lista(nn) = {my(d=log(10)/m, r=log(sqrt(5))/m, s=log(5-sqrt(5))/m, t=0, u=1); for(n=1, nn, u=10*u; while(sJinyuan Wang, Feb 21 2020

Formula

Limit_{n->infinity} a(n)/10^n = log(2), where the base is 10. - Robert Gerbicz, Sep 05 2002

Extensions

More terms from Robert Gerbicz, Sep 05 2002
a(9)-a(10) from Jinyuan Wang, Feb 21 2020
a(11) from Sean A. Irvine, Dec 04 2024

A166065 Triangle, read by rows, given by [0,1,1,0,0,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 0, 4, 2, 2, 0, 8, 4, 2, 2, 0, 16, 8, 4, 2, 2, 0, 32, 16, 8, 4, 2, 2, 0, 64, 32, 16, 8, 4, 2, 2, 0, 128, 64, 32, 16, 8, 4, 2, 2, 0, 256, 128, 64, 32, 16, 8, 4, 2, 2, 0, 512, 256, 128, 64, 32, 16, 8, 4, 2, 2, 0, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 2, 0, 2048, 1024
Offset: 0

Views

Author

Philippe Deléham, Oct 05 2009

Keywords

Examples

			Triangle begins :
1,
0,2,
0,2,2,
0,4,2,2,
0,8,4,2,2,
0,16,8,4,2,2,
0,32,16,8,4,2,2,
0,64,32,16,8,4,2,2,
0,128,64,32,16,8,4,2,2,
0,256,128,64,32,16,8,4,2,2,
0,512,256,128,64,32,16,8,4,2,2,
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A084247(n), A000007(n), A000079(n), A001787(n+1), A166060(n), A165665(n), A083585(n) for x= -1, 0, 1, 2, 3, 4, 5 respectively. Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A040000(n), A000079(n), A095121(n), A047851(n), A047853(n), A047855(n) for x = 0, 1, 2, 3, 4, 5 respectively.
G.f.: (1-2*x+x*y)/((-1+2*x)*(x*y-1)). - R. J. Mathar, Aug 11 2015

A166124 Triangle, read by rows, given by [0,1/2,1/2,0,0,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2009

Keywords

Examples

			Triangle begins :
1 ;
0,2 ;
0,1,2 ;
0,1,1,2 ;
0,1,1,1,2 ;
0,1,1,1,1,2 ;
0,1,1,1,1,1,2 ; ...
		

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^(n-k)= A166122(n), A166114(n), A084222(n), A084247(n), A000034(n), A040000(n), A000027(n+1), A000079(n), A007051(n), A047849(n), A047850(n), A047851(n), A047852(n), A047853(n), A047854(n), A047855(n), A047856(n) for x= -5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^k= A000007(n), A000027(n+1), A033484(n), A134931(n), A083597(n) for x= 0,1,2,3,4 respectively.
T(n,k)= A166065(n,k)/2^(n-k).
G.f.: (1-x+x*y)/(1-x-x*y+x^2*y). - Philippe Deléham, Nov 09 2013
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013

A176088 Table T(n,k) = ceiling(10^n/(10^k-1)), n >= 0, k >= 1, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 12, 1, 1, 112, 2, 1, 1, 1112, 11, 1, 1, 1, 11112, 102, 2, 1, 1, 1, 111112, 1011, 11, 1, 1, 1, 1, 1111112, 10102, 101, 2, 1, 1, 1, 1, 11111112, 101011, 1002, 11, 1, 1, 1, 1, 1, 111111112, 1010102, 10011, 101, 2, 1, 1, 1, 1, 1, 1111111112, 10101011, 100101
Offset: 0

Views

Author

Rick L. Shepherd, Apr 10 2010

Keywords

Comments

For n+1 >= k, minimal number of k-digit base 10 numbers totaling an (n+1)-digit sum.
Column 1 of the table, T(n,1) = 1, 2, 12, 112, 1112, ..., is A047855.
T(n,k) = 1 for k >= n+1.
T(i,i) = 2 for i > 0. Generally, for all m >= 1 and i >= 0, T(2m-1+i,m+i) = 10^(m-1) + 1.

Examples

			The table begins:
.........1,........1,.......1,......1,.....1,....1,...1,..1,.1,1,1,1,...
.........2,........1,.......1,......1,.....1,....1,...1,..1,.1,1,1,1,...
........12,........2,.......1,......1,.....1,....1,...1,..1,.1,1,1,1,...
.......112,.......11,.......2,......1,.....1,....1,...1,..1,.1,1,1,1,...
......1112,......102,......11,......2,.....1,....1,...1,..1,.1,1,1,1,...
.....11112,.....1011,.....101,.....11,.....2,....1,...1,..1,.1,1,1,1,...
....111112,....10102,....1002,....101,....11,....2,...1,..1,.1,1,1,1,...
...1111112,...101011,...10011,...1001,...101,...11,...2,..1,.1,1,1,1,...
..11111112,..1010102,..100101,..10002,..1001,..101,..11,..2,.1,1,1,1,...
.111111112,.10101011,.1001002,.100011,.10001,.1001,.101,.11,.2,1,1,1,...
1111111112,101010102,10010011,1000101,100002,10001,1001,101,11,2,1,1,...
...
		

Crossrefs

Cf. A047855.

Programs

  • PARI
    T(n,k) = if(n>=0 && k>=1, ceil(10^n/(10^k-1)))

A308945 Number of totient numbers, phi(k), k <= 10^n, whose initial digit is 1.

Original entry on oeis.org

2, 20, 213, 2152, 21594, 216009, 2159776, 21595522, 215951111, 2159507603, 21595061256, 215950604593
Offset: 1

Views

Author

Frank M Jackson, Jul 02 2019

Keywords

Comments

The probability that a totient number starts with an initial 1 does not obey Benford's law however it does appear to tend to a constant value. In a sample of 10^9 totient numbers the distribution of initial digits 1 - 9 is approx. 21.595%, 20.774%, 16.457%, 12.682%, 7.904%, 6.633%, 5.505%, 4.634%, 3.816%.

Examples

			a(1)=2 as the first 10 totient numbers are {1, 1, 2, 2, 4, 2, 6, 4, 6, 4} and the occurrence of numbers with an initial 1 is 2.
		

Crossrefs

Programs

  • Mathematica
    lst1={}; Do[lst=Table[0, {n, 1, 9}]; Do[++lst[[First@IntegerDigits@EulerPhi[n]]], {n, 1, 10^m}]; AppendTo[lst1, lst[[1]]], {m, 1, 7}]; lst1
  • PARI
    a(n) = {k=0; for(j=1, 10^n, if(digits(eulerphi(j))[1]==1, k++)); k} \\ Jinyuan Wang, Jul 04 2019

Extensions

a(10)-a(12) from Giovanni Resta, Jul 04 2019
Previous Showing 11-19 of 19 results.