cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A159856 Triangle read by rows: T(n,0) = n+1, T(n,k) = 2*T(n-1,k) - T(n-1,k-1), T(n,k) = 0 if k > n and if k < 0.

Original entry on oeis.org

1, 2, -1, 3, -4, 1, 4, -11, 6, -1, 5, -26, 23, -8, 1, 6, -57, 72, -39, 10, -1, 7, -120, 201, -150, 59, -12, 1, 8, -247, 522, -501, 268, -83, 14, -1, 9, -502, 1291, -1524, 1037, -434, 111, -16, 1, 10, -1013, 3084, -4339, 3598, -1905, 656, -143, 18, -1
Offset: 0

Views

Author

Philippe Deléham, Apr 24 2009

Keywords

Comments

A Riordan array - see the Luzon references.
The second column is A000295 signed. - Michel Marcus, Feb 14 2014

Examples

			Triangle begins
  1;
  2,   -1;
  3,   -4,    1;
  4,  -11,    6,   -1;
  5,  -26,   23,   -8,    1;
  6,  -57,   72,  -39,   10,   -1;
  7, -120,  201, -150,   59,  -12,    1;
  ...
		

Crossrefs

Programs

  • Mathematica
    With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x)/(1-x)^2/(1-2*x
    +y*x), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
  • Maxima
    T(n,k):=coeff(taylor(1/(1-x)^2*(-x/(1-x))^k,x,0,15),x,n); /* Vladimir Kruchinin, Nov 22 2016 */

Formula

From R. J. Mathar, May 31 2009: (Start)
Sum_{k=0..n} T(n,k) = A080956(n).
Conjecture: Sum_{i=0..n} |T(n,k)| = A047926(n). (End)
T(n,k) = (-1)^k*Sum_{i=0..n-k} binomial(n+1,i+k+1)*binomial(i+k-1,k-1) for k > 0. - Vladimir Kruchinin, Nov 22 2016 [corrected by Werner Schulte, May 09 2024]
G.f.: (1-2*x)/(1-x)^2/(1-2*x+y*x). - Vladimir Kruchinin, Nov 22 2016

Extensions

a(41) corrected by Georg Fischer, Feb 18 2020

A185055 Number of representations of 5^(2n) as a sum a^2 + b^2 + c^2 with 0 < a <= b <= c.

Original entry on oeis.org

0, 0, 2, 14, 76, 388, 1950, 9762, 48824, 244136, 1220698, 6103510, 30517572, 152587884, 762939446, 3814697258, 19073486320, 95367431632, 476837158194, 2384185791006, 11920928955068, 59604644775380, 298023223876942, 1490116119384754, 7450580596923816, 37252902984619128
Offset: 0

Views

Author

Zak Seidov, Mar 02 2012

Keywords

Comments

Corresponding formulas for several first primes:
p=3, a(n)=(3*3^n+2*n+1)/4 (A047926)
p=5, a(n)=(5^n-4*n-1)/8 (A185055)
p=7, a(n)=(7^n-1)/6
p=11, a(n)=(3*11^n+10*n-3)/20
p=13, a(n)=(13^n-4*n-1)/8
p=17, a(n)=(17^n-1)/8
p=19, a(n)=(5*19^n+18*n-5)/36
p=23, a(n)=3*(23^n-1)/22
p=29, a(n)=(29^n-4*n-1)/8
p=31, a(n)=2*(31^n-1)/15
p=37, a(n)=(37^n-4*n-1)/8
p=41, a(n)=(41^n-1)/8
p=43, a(n)=(11*43^n+42*n-11)/84
p=47, a(n)=3*(47^n-1)/23.
General formulas for a(n) depend on p mod 8 as follows:
p = 1 mod 8, a(n)=(p^n-1)/8
p = 3 mod 8, a(n)=((p + 1)*p^n + 4*(p - 1)*n - (p + 1))/(8*(p - 1))
p = 5 mod 8, a(n)=(p^n-4*n-1)/8
p = 7 mod 8, a(n)=((p + 1)*(p^n - 1))/(8*(p - 1)).

Examples

			a(2)=2 because 25^2 = 9^2+12^2+20^2 = 12^2+15^2+16^2.
		

Crossrefs

Formula

a(n) = (5^n-4n-1)/8.
From Chai Wah Wu, Jun 07 2024: (Start)
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3) for n > 2.
G.f.: -2*x^2/((x - 1)^2*(5*x - 1)). (End)
a(n) = 2 * A014827(n-1) for n >= 2. - Alois P. Heinz, Jun 07 2024

A244762 a(n) = (5*3^n-2*n-1)/4.

Original entry on oeis.org

1, 3, 10, 32, 99, 301, 908, 2730, 8197, 24599, 73806, 221428, 664295, 1992897, 5978704, 17936126, 53808393, 161425195, 484275602, 1452826824, 4358480491, 13075441493, 39226324500, 117678973522, 353036920589, 1059110761791, 3177332285398, 9531996856220, 28595990568687, 85787971706089, 257363915118296
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A060816 (first differences).

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x+2*x^2)/((1-3*x)*(1-x)^2), {x, 0, 30}], x] (* Vaclav Kotesovec, Jul 06 2014 *)

Formula

a(n+1) = 3*a(n) + n.
G.f.: (1-2*x+2*x^2) / ((1-3*x)*(1-x)^2).
E.g.f.: exp(x)*(5*exp(2*x) - 2*x - 1)/4. - Stefano Spezia, Aug 28 2023

A103177 a(n) = (7*3^n + 2n + 5)/4.

Original entry on oeis.org

3, 7, 18, 50, 145, 429, 1280, 3832, 11487, 34451, 103342, 310014, 930029, 2790073, 8370204, 25110596, 75331771, 225995295, 677985866, 2033957578, 6101872713, 18305618117, 54916854328, 164750562960, 494251688855, 1482755066539
Offset: 0

Views

Author

Creighton Dement, Mar 17 2005

Keywords

Comments

A floretion-generated sequence relating sequences A007051 and A047926. (a(n)) results from a force transform of the sequence of powers of 3.
Floretion Algebra Multiplication Program, FAMP Code: 4jesleftforseq[A*B] with A = - .25'i - .25i' - .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' - .25e and B = + 'i + .5j' + .5k' + .5'ij' + .5'ik', 1vesforseq[A*B](n) = 3^(n+1), ForType: 1A.

Crossrefs

Programs

  • Mathematica
    Table[(7*3^n+2*n+5)/4,{n,0,25}]  (* Harvey P. Dale, Feb 23 2011 *)

Formula

a(n) = 2*A007051(n) + A047926(n).
a(n) = 5*a(n-1)-7*a(n-2)+3*a(n-3). G.f.: (3-2*x)*(1-2*x)/((1-x)^2*(1-3*x)). [Colin Barker, Aug 28 2012]

Extensions

More terms from Harvey P. Dale, Feb 23 2011

A133341 A007318 * A134312.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 8, 4, 5, 10, 20, 20, 8, 6, 15, 40, 60, 48, 16, 7, 21, 70, 140, 168, 112, 32, 8, 28, 112, 280, 448, 448, 256, 64, 9, 36, 168, 504, 1008, 1344, 1152, 576, 128, 10, 45, 240, 840, 2016, 3360, 3840, 2880, 1280, 256
Offset: 0

Views

Author

Gary W. Adamson, Oct 19 2007

Keywords

Comments

Row sums = A047926: (1, 3, 8, 22, 63, 185, ...).

Examples

			First few rows of the triangle:
  1;
  2,   1;
  3,   3,   2;
  4,   6,   8,   4;
  5,  10,  20,  20,   8;
  6,  15,  40,  60,  48,  16;
  7,  21,  70, 140, 168, 112,  32;
  ...
		

Crossrefs

Formula

Binomial transform of A134312, as infinite lower triangular matrices.
Previous Showing 11-15 of 15 results.