cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A301760 Number of rooted twice-partitions of n where the composite rooted partition is constant.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 63, 82, 109, 140, 183, 233, 298, 376, 479, 598, 753, 938, 1171, 1449, 1797, 2210, 2726, 3342, 4095, 4990, 6088, 7388, 8968, 10843, 13099, 15770, 18975, 22756, 27276, 32603, 38925, 46353, 55158, 65479, 77656, 91904, 108645
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(5) = 7 rooted twice-partitions: (3), (111), (2)(), (11)(), (1)(1), (1)()(), ()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=(1-nn)/(1-x)+Sum[Product[1/(1-x^(d k+1)),{k,0,nn}],{d,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

Formula

O.g.f.: 1/(1 - x) + Sum_{n > 0} (-1/(1 - x) + Product_{k >= 0} 1/(1 - x^(n * k + 1))).

A302549 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1/(1 - x^(k*j))^j).

Original entry on oeis.org

1, 4, 7, 17, 25, 58, 87, 177, 289, 528, 860, 1550, 2486, 4257, 6910, 11474, 18335, 29941, 47331, 75819, 118887, 187338, 290784, 452904, 696058, 1071234, 1632947, 2487504, 3759613, 5676424, 8512310, 12744903, 18975839, 28194293, 41691157, 61516394, 90379785
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 20 2018

Keywords

Comments

Inverse Moebius transform of A000219.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*numtheory[sigma][2](j), j=1..n)/n)
        end:
    a:= n-> add(b(d), d=numtheory[divisors](n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    nmax = 37; Rest[CoefficientList[Series[Sum[-1 + Product[1/(1 - x^(k j))^j, {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]]
    b[n_] := b[n] = SeriesCoefficient[Product[1/(1 - x^k)^k , {k, 1, n}], {x, 0, n}]; a[n_] := a[n] = SeriesCoefficient[Sum[b[k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 37}]
    b[0] = 1; b[n_] := b[n] = Sum[b[n - j] DivisorSigma[2, j], {j, n}]/n; a[n_] := a[n] = Sum[b[d], {d, Divisors[n]}]; Table[a[n], {n, 37}]

Formula

G.f.: Sum_{k>=1} A000219(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} A000219(d).

A323764 Dirichlet self-convolution of the integer partition numbers A000041.

Original entry on oeis.org

1, 1, 4, 6, 14, 14, 34, 30, 64, 69, 112, 112, 228, 202, 330, 394, 575, 594, 956, 980, 1492, 1674, 2228, 2510, 3700, 3965, 5276, 6200, 8126, 9130, 12318, 13684, 17842, 20622, 25808, 29976, 38377, 43274, 53990, 62976, 77912, 89166, 110656, 126522, 154918, 179744
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(4) = 14 multiset partitions of constant multiset partitions:
  ((1111))              ((22))      ((4))  ((31))  ((211))
  ((11)(11))            ((2)(2))
  ((11))((11))          ((2))((2))
  ((1)(1)(1)(1))
  ((1))((1)(1)(1))
  ((1)(1))((1)(1))
  ((1))((1))((1)(1))
  ((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[PartitionsP[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019

A323776 a(n) = Sum_{k = 1...n} binomial(k + 2^(n - k) - 1, k - 1).

Original entry on oeis.org

1, 3, 7, 16, 40, 119, 450, 2253, 15207, 139190, 1731703, 29335875, 677864041, 21400069232, 924419728471, 54716596051100, 4443400439075834, 495676372493566749, 76041424515817042402, 16060385520094706930608, 4674665948889147697184915
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Number of multiset partitions of integer partitions of 2^(n - 1) whose parts are constant and have equal sums.

Examples

			The a(1) = 1 through a(4) = 16 partitions of partitions:
  (1)  (2)     (4)           (8)
       (11)    (22)          (44)
       (1)(1)  (1111)        (2222)
               (2)(2)        (4)(4)
               (2)(11)       (4)(22)
               (11)(11)      (22)(22)
               (1)(1)(1)(1)  (4)(1111)
                             (11111111)
                             (22)(1111)
                             (1111)(1111)
                             (2)(2)(2)(2)
                             (2)(2)(2)(11)
                             (2)(2)(11)(11)
                             (2)(11)(11)(11)
                             (11)(11)(11)(11)
                             (1)(1)(1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k+2^(n-k)-1,k-1],{k,n}],{n,20}]
  • PARI
    a(n) = sum(k=1, n, binomial(k+2^(n-k)-1, k-1)); \\ Michel Marcus, Jan 28 2019

A329436 Expansion of Sum_{k>=1} (-1 + Product_{j>=2} (1 + x^(k*j))).

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 3, 5, 6, 8, 7, 13, 10, 16, 18, 22, 21, 34, 29, 44, 45, 56, 56, 82, 78, 100, 109, 136, 137, 185, 181, 231, 247, 295, 317, 399, 404, 490, 533, 638, 669, 817, 853, 1020, 1108, 1276, 1371, 1638, 1728, 2017, 2186, 2519, 2702, 3153, 3371, 3885
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 13 2019

Keywords

Comments

Inverse Moebius transform of A025147.
Number of uniform (constant multiplicity) partitions of n not containing 1, ranked by the odd terms of A072774. - Gus Wiseman, Dec 01 2023

Examples

			From _Gus Wiseman_, Dec 01 2023: (Start)
The a(2) = 1 through a(10) = 8 uniform partitions not containing 1:
  (2)  (3)  (4)    (5)    (6)      (7)    (8)        (9)      (10)
            (2,2)  (3,2)  (3,3)    (4,3)  (4,4)      (5,4)    (5,5)
                          (4,2)    (5,2)  (5,3)      (6,3)    (6,4)
                          (2,2,2)         (6,2)      (7,2)    (7,3)
                                          (2,2,2,2)  (3,3,3)  (8,2)
                                                     (4,3,2)  (5,3,2)
                                                              (3,3,2,2)
                                                              (2,2,2,2,2)
(End)
		

Crossrefs

The strict case is A025147.
The version allowing 1 is A047966.
The version requiring 1 is A097986.

Programs

  • Mathematica
    nmax = 56; CoefficientList[Series[Sum[-1 + Product[(1 + x^(k j)), {j, 2, nmax}], {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&SameQ@@Length/@Split[#]&]], {n,0,30}] (* Gus Wiseman, Dec 01 2023 *)

Formula

G.f.: Sum_{k>=1} A025147(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A025147(d).

A003606 a(n) = number of types of conjugacy classes in GL(n,q) (this is independent of q).

Original entry on oeis.org

1, 4, 8, 22, 42, 103, 199, 441, 859, 1784, 3435, 6882, 13067, 25366, 47623, 90312, 167344, 311603, 570496, 1045896, 1893886, 3426466, 6140824, 10984249, 19499214, 34526844, 60758733, 106613119, 186099976, 323883380, 561141244, 969308408
Offset: 1

Views

Author

Keywords

Examples

			a(2) = 4 as there are four types of conjugacy classes of 2 X 2 matrices over GF(q):
* the scalar matrices (diagonal matrix with both entries the same)
* the direct sum of two scalars (diagonal matrix with both entries different)
* the non-diagonalizable Jordan block (upper triangular matrix with the same entry along the diagonal and a 1 in the superdiagonal)
* companion matrices of irreducible quadratics over GF(q)
This example can be found in Green's paper (in the references).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a := function(n) local k,sum; sum := 0; for k in [0..n-1] do sum := sum + a(k)*g(n-k); od; return sum/n; end;
    g := function(n) local i,j,sum; for i in DivisorsInt(n) do for j in DivisorsInt(n/i) do sum := sum + NrPartitions(i)*i*j; od; od; return sum; end;;
    # This code is significantly faster if you store previously computed values of a(n) and g(n).
    # Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003
    
  • GAP
    a := function(n) if( n = 0) then return 1; else return Sum([0..n], i -> t(i) * Sum(DivisorsInt(n-i), d -> d * NrPartitions(d) * Sigma(n/d)) )/n; fi; end;; # Brett Witty (witty(AT)maths.anu.edu.au), Jul 12 2006
  • Mathematica
    m = 32; f[x_] = Product[1/(1-x^k), {k, 1, m}]; gf[x_] = Product[f[x^k]^PartitionsP[k], {k, 1, m}]; Drop[ CoefficientList[ Series[gf[x], {x, 0, m}], x], 1] (* Jean-François Alcover, Aug 01 2011, after g.f. *)

Formula

G.f.: Product_{k >= 1} f(x^k)^p_k, where f(x) = Product_{k >= 0} 1/(1-x^k) = Sum_{k >= 0} p_k*x^k and p_k is the number of partitions of k (A000041).
Recurrence relation: a(n+1) = (1/(n+1)) * Sum_{k=0..n} a(k)*g(n-k+1) where g(n) = Sum_{i*j | n} p(i)*i*j, with the sum over all ordered pairs (i, j) such that their products divide n and p(i) is the number of partitions of i. Also a(0)=1. - Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003
Euler transform of A047968(n). - Vladeta Jovovic, Jun 23 2004
Recurrence relation: a(0)=1, a(n+1) = (1/(n+1)) * Sum_{k=0..n} a(k)*g(n-k+1) where g(n) = Sum_{d | n} d * A000041(d) * A000203(n/d). - Brett Witty (witty(AT)maths.anu.edu.au), Jul 12 2006

Extensions

More terms from Brett Witty (witty(AT)maths.anu.edu.au), Jul 17 2003

A055893 Inverse Moebius transform of partition triangle A008284.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 3, 1, 3, 1, 2, 2, 1, 2, 1, 4, 4, 3, 1, 4, 1, 3, 4, 3, 2, 1, 2, 1, 5, 5, 8, 3, 3, 1, 4, 1, 4, 8, 6, 5, 4, 2, 1, 3, 1, 6, 8, 11, 8, 7, 3, 3, 1, 4, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 2, 1, 7, 13, 19, 13, 17, 7, 8, 4, 3, 1, 6, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 2, 1, 8, 16, 26
Offset: 1

Views

Author

Christian G. Bower, Jun 09 2000

Keywords

Examples

			1; 1,2; 1,1,2; 1,3,1,3; 1,2,2,1,2; ...
		

Crossrefs

Row sums give A047968. Cf. A055892.

A063835 Three times partitioned numbers: the number of ways a number can be partitioned in (not necessarily different) parts and each part again so partitioned a second and a third time.

Original entry on oeis.org

1, 5, 14, 51, 125, 429, 1039, 3258, 8254, 23554, 58934, 168803, 412177, 1114550, 2795446, 7345875, 18035424, 46875324, 114272057, 291692396, 709742614, 1774402071, 4290848175, 10672950659, 25572179792, 62670553073, 149978278320
Offset: 1

Views

Author

Wouter Meeussen, Aug 21 2001

Keywords

Crossrefs

Cf. A063834.

Programs

  • Mathematica
    Table[Plus@@((Apply[Plus, #/. i_Integer-> PartitionsP[i], {1}]/. f->Times)& /@ Flatten[Flatten[Outer[f, Sequence@@(Partitions/@#), 1]]&/@Partitions[w]]), {w, 16}]
    nmax = 40; A047968 = Table[Sum[PartitionsP[d], {d, Divisors[n]}], {n, 1, nmax}]; conv = Table[Sum[A047968[[j]]*PartitionsP[m - j], {j, 1, m}], {m, 1, nmax}]; A063835 = Rest[CoefficientList[Series[Product[1/(1 - conv[[k]]*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Mar 27 2016 *)

Formula

G.f.: 1/Product(1-b(n)*x^n, n=1..infinity), where b(n) is sum of number of partitions of parts in all partitions of n; b() is convolution of A047968() and A000041(). - Vladeta Jovovic, Nov 22 2005
From Vaclav Kotesovec, Mar 28 2016: (Start)
a(n) ~ c * 21^(n/4), where
c = 31506.382471540934704971753670563958673161001663... if mod(n,4) = 0
c = 31502.248225846169487427060315658509213347537914... if mod(n,4) = 1
c = 31506.175349116205868096360427802563935891182649... if mod(n,4) = 2
c = 31502.232274793501377850265964413938565498517297... if mod(n,4) = 3
(End)

Extensions

More terms from Vladeta Jovovic, Nov 22 2005

A137587 Triangle read by rows: A051731 * A026794.

Original entry on oeis.org

1, 2, 1, 3, 0, 1, 5, 2, 0, 1, 6, 1, 0, 0, 1, 11, 3, 2, 0, 0, 1, 12, 2, 1, 0, 0, 0, 1, 20, 6, 1, 2, 0, 0, 0, 1, 25, 4, 3, 1, 0, 0, 0, 0, 1, 37, 9, 2, 1, 2, 0, 0, 0, 0, 1, 43, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1, 70, 16, 6, 3, 1, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 27 2008

Keywords

Comments

That is, regard A051731 and A026794 as lower triangular square matrices and multiply them, then take the lower triangle of the product,
Left column = A083710 starting (1, 2, 3, 5, 6, 11, 12, ...).
Row sums = A047968.

Examples

			First few rows of the triangle:
   1;
   2, 1;
   3, 0, 1;
   5, 2, 0, 1;
   6, 1, 0, 0, 1;
  11, 3, 2, 0, 0, 1;
  12, 2, 1, 0, 0, 0, 1;
  20, 6, 1, 2, 0, 0, 0, 1;
  25, 4, 3, 1, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Inverse mobius transform of the partition triangle, A026794.

Extensions

Typo in 9th row corrected by M. F. Hasler, Jun 08 2009

A301763 Number of ways to choose a constant rooted partition of each part in a constant rooted partition of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 5, 8, 13, 14, 5, 32, 7, 20, 64, 26, 6, 92, 7, 126, 199, 22, 5, 352, 252, 41, 581, 394, 7, 1832, 9, 292, 2119, 31, 3216, 4946, 10, 40, 8413, 7708, 9, 20656, 9, 2324, 53546, 24, 5, 70040, 16395, 59361, 131204, 9503, 7, 266780, 178180, 82086
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(7) = 8 rooted twice-partitions: (5), (11111), (2)(2), (2)(11), (11)(2), (11)(11), (1)(1)(1), ()()()()()().
The a(15) = 20 rooted twice-partitions:
()()()()()()()()()()()()()(),
(1)(1)(1)(1)(1)(1)(1), (111111)(111111), (1111111111111),
(111111)(222), (222)(111111), (222)(222),
(111111)(33), (222)(33), (33)(111111), (33)(222), (33)(33),
(111111)(6), (222)(6), (33)(6), (6)(111111), (6)(222), (6)(33), (6)(6),
(13).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,Sum[If[d===n-1,1,DivisorSigma[0,(n-1)/d-1]]^d,{d,Divisors[n-1]}]],{n,50}]
  • PARI
    a(n)=if(n==1, 1, sumdiv(n-1, d, if(d==n-1, 1, numdiv((n-1)/d-1)^d))) \\ Andrew Howroyd, Aug 26 2018
Previous Showing 31-40 of 57 results. Next