cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 73 results. Next

A376513 Expansion of e.g.f. exp(x^3 * (1 + x)).

Original entry on oeis.org

1, 0, 0, 6, 24, 0, 360, 5040, 20160, 60480, 1814400, 19958400, 99792000, 1037836800, 21794572800, 228843014400, 1743565824000, 29640619008000, 542423327846400, 6082255020441600, 70959641905152000, 1429329929803776000, 24977793950613504000
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(k, n-3*k)/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(k,n-3*k)/k!.
a(n) = (n-1)*(n-2) * (3*a(n-3) + 4*(n-3)*a(n-4)).
a(n) ~ 2^(n/2 - 1) * exp(-27/1024 + 45*2^(-19/2)*n^(1/4) - 9*n^(1/2)/64 + 2^(-3/2)*n^(3/4) - 3*n/4) * n^(3*n/4) * (1 + 264471/(5*2^(37/2)*n^(1/4))). - Vaclav Kotesovec, Sep 26 2024

A377956 a(n) = n! * Sum_{k=0..n} binomial(k+4,n-k) / k!.

Original entry on oeis.org

1, 5, 23, 103, 473, 2261, 11215, 57863, 309713, 1715653, 9831911, 58058375, 353546473, 2210900693, 14215319903, 93610866151, 632159025185, 4362925851653, 30809311250743, 221958273142823, 1632956199823481, 12238229941781845, 93509510960341103, 726913018468699463
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, binomial(k+4, n-k)/k!);

Formula

E.g.f.: (1 + x)^4 * exp(x + x^2).
a(n) = -(n-6)*a(n-1) + 3*(n-1)*a(n-2) + 2*(n-1)*(n-2)*a(n-3) for n > 2.

A115326 E.g.f.: exp(x/(1-2*x))/sqrt(1-4*x^2).

Original entry on oeis.org

1, 1, 9, 49, 625, 6561, 109561, 1697809, 35247969, 717436225, 17862589801, 448030761201, 13029739166929, 387070092765409, 12888060720104025, 441427773256896721, 16566268858818121921, 641658452161285040769
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2006

Keywords

Comments

Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.

Crossrefs

Cf. A047974.

Programs

  • Mathematica
    CoefficientList[Series[E^(x/(1-2*x))/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)
    RecurrenceTable[{a[0] == a[1] == 1, a[2] == 9, a[n] == (2 n - 1) a[n - 1] + 2 (n - 1) (2 n - 1) a[n - 2] - 8 (n - 2)^2 (n - 1) a[n - 3]}, a, {n, 20}] (* Bruno Berselli, Sep 27 2013 *)
    Table[Abs[HermiteH[n, I/2]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 11 2016 *)
  • PARI
    a(n)=local(m=2);n!*polcoeff(exp(x/(1-m*x+x*O(x^n)))/sqrt(1-m^2*x^2+x*O(x^n)),n)

Formula

Equals the term-by-term square of A047974 which has e.g.f.: exp(x+x^2).
D-finite with recurrence: a(n) = (2*n-1)*a(n-1) + 2*(n-1)*(2*n-1)*a(n-2) - 8*(n-2)^2*(n-1)*a(n-3). - Vaclav Kotesovec, Sep 25 2013
a(n) ~ 2^(n-1)*n^n*exp(sqrt(2*n)-n-1/4) * (1 + 13/(24*sqrt(2*n))). - Vaclav Kotesovec, Sep 25 2013
a(n) = |H_n(i/2)|^2 / 2^n = H_n(i/2) * H_n(-i/2) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1). - Vladimir Reshetnikov, Oct 11 2016

A195186 Number of palindromic double occurrence words of length 2n.

Original entry on oeis.org

1, 2, 6, 20, 72, 290, 1198, 5452, 25176, 125874, 637926, 3448708, 18919048, 109412210, 642798510, 3945170012, 24614491704, 159328958690, 1048645656646, 7122719571700, 49185991168968, 349097516604738, 2518145666958126, 18609525157571692, 139704193446510616
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2011

Keywords

Programs

  • Maple
    A047974 := proc(n) option remember; if n= 1 then 1; elif n=2 then 3; else procname(n-1)+2*(n-1)*procname(n-2) ; end if; end proc:
    A195186 := proc(n) if n <= 1 then 1; else A047974(n)-add(procname(n-2*k)*doublefactorial(2*k-1),k=1..floor(n/2)) ; end if; end proc:
    seq(A195186(n),n=1..20) ; # R. J. Mathar, Sep 12 2011
  • Mathematica
    b[n_] := Sum[Binomial[k, n - k]*(n!/k!), {k, 0, n}];
    a[1] = 1; a[n_] := b[n] - Sum[a[n - 2*k]*(2*k - 1)!!, {k, 1, n/2}];
    Array[a, 20] (* Jean-François Alcover, Nov 29 2017, after R. J. Mathar *)

Formula

Theorem 3.3 of Burns-Muche gives a recurrence.

A271218 Number of symmetric linked diagrams with n links and no simple link.

Original entry on oeis.org

1, 0, 1, 3, 12, 39, 167, 660, 3083, 13961, 70728, 355457, 1936449, 10587960, 61539129, 361182139, 2224641540, 13880534119, 90090083047, 593246514588, 4038095508691, 27905008440273, 198401618299920, 1432253086621377, 10600146578310209, 79639887325700592, 611739960145556273
Offset: 0

Views

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

Number of symmetric chord diagrams (where reflection is equivalent) with n chords and no simple chords.
Number of symmetric assembly words that do not contain the subword aa.

Examples

			For n=0 the a(0)=1 solution is { ∅ }.
For n=1 there are no solutions since the link in a diagram with one link, 11, is simple.
For n=2 the a(2)=1 solution is { 1212 }.
For n=3 the a(3)=3 solutions are { 123123, 121323, 123231 }.
For n=4 the a(4)=12 solutions are { 12123434, 12132434, 12324341, 12314234, 12341234, 12342341, 12314324, 12341324, 12343412, 12343421, 12324143, 12342143 }.
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,20}]
  • PARI
    lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); va;} \\ Michel Marcus, Jul 28 2020

Formula

a(n) = 2*a(n-1) + (2n-3)*a(n-2) - (2n-5)*a(n-3) + 2*a(n-4) - a(n-5).
a(n) = a(n-1) + 2*(n-1)*a(n-2) + a(n-3) + a(n-4) + 2*sum( k=0..n-4, a(k) ).
a(n) ~ 2^(-1/2) * e^(-5/8) * (2n/e)^(n/2) * e^( sqrt(n/2) ) (conjectured).
a(n)/a(n-1) ~ sqrt(2n) (conjectured).
a(n)/A047974(n) ~ 1/sqrt(e) (conjectured).

Extensions

More terms from Michel Marcus, Jul 28 2020

A291632 Column 1 of A122832.

Original entry on oeis.org

0, 1, 2, 9, 28, 125, 486, 2317, 10424, 53433, 267850, 1470161, 8032212, 46925749, 275437358, 1702883925, 10630404976, 69192858737, 455957606034, 3110617216153, 21512638153100, 153234193139181, 1107087138215542, 8206182165264029, 61703155328534568
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[Binomial[i, n - 1 - i]/i!, {i, 0, n - 1}], {n, 0, 30}]
    CoefficientList[Series[x*E^(x*(x+1)), {x, 0, 20}], x] * Range[0, 20]!

Formula

E.g.f.: x*exp(x*(x+1)).
Recurrence: (n-1)*a(n) = n*a(n-1) + 2*(n-1)*n*a(n-2).
a(n) ~ 2^(n/2 - 1) * n^((n+1)/2) * exp(sqrt(n/2) - n/2 - 1/8).

A354015 Expansion of e.g.f. 1/(1 - x)^(1 - log(1-x)).

Original entry on oeis.org

1, 1, 4, 18, 106, 750, 6188, 58184, 613156, 7149780, 91319712, 1267089912, 18969355656, 304646227704, 5222700792528, 95169251327040, 1836450816902928, 37403582826055824, 801728489886598848, 18037821249349491360, 424970923585819603872, 10462258547232790348512
Offset: 0

Views

Author

Seiichi Manyama, May 14 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(1-log(1-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x)*(1-log(1-x)))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (1+2*sum(k=1, j-1, 1/k))*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*abs(stirling(n, k, 1)));

Formula

E.g.f.: exp( -log(1-x) * (1 - log(1-x)) ).
a(0) = 1; a(n) = Sum_{k=1..n} A000776(k-1) * binomial(n-1,k-1) * a(n-k) = (n-1)! * Sum_{k=1..n} (1 + 2*Sum_{j=1..k-1} 1/j) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} A047974(k) * |Stirling1(n,k)|.

A361036 a(n) = n! * [x^n] (1 + x)^n * exp(x*(1 + x)^n).

Original entry on oeis.org

1, 2, 11, 124, 2225, 56546, 1928707, 85029596, 4687436609, 314255427490, 25077179715131, 2343489559096412, 253185531592066801, 31279831940279656514, 4376923336721600128115, 687815536092999747916156, 120491486068612766739548417, 23378730923206887237941740226
Offset: 0

Views

Author

Peter Bala, Mar 13 2023

Keywords

Comments

We conjecture that a(n+k) == a(n) (mod k) for all n and k. If true, then for each k, the sequence a(n) taken modulo k is a periodic sequence and the period divides k. For example, modulo 7 the sequence becomes [1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, 1, 2, 4, 5, 6, 0, 4, ...], apparently a periodic sequence of period 7.
More generally, let F(x) and G(x) denote power series with integer coefficients with F(0) = G(0) = 1. Define b(n) = n! * [x^n] exp(x*G(x)^n)*F(x)^n. Then we conjecture that b(n+k) == b(n) (mod k) for all n and k.

Crossrefs

Programs

  • Maple
    seq( n!*add(add(binomial(n,i+j)*binomial(j*n,i)/j!, j = 0..n-i), i = 0..n), n = 0..20);
  • Mathematica
    Table[n! * Sum[Sum[Binomial[n, i + j]*Binomial[j*n, i]/j!, {j, 0, n - i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2023 *)

Formula

a(n) = n!*Sum_{i = 0..n} Sum_{j = 0..n-i} binomial(n,i+j)*binomial(j*n,i)/j!.
a(n) ~ n! * exp(r*(1+r)^n) * (1+r)^(n/2 + 1) / (sqrt(2*Pi*n*(3 + n*r)) * r^(n+1)), where r = 2*LambertW(n/2)/n - (n + 2*LambertW(n/2)) * (n - 4*LambertW(n/2)^3) / (n^3 * (3 + 2*LambertW(n/2))). - Vaclav Kotesovec, Mar 28 2023

A361570 Expansion of e.g.f. exp( (x * (1+x))^2 ).

Original entry on oeis.org

1, 0, 2, 12, 36, 240, 2280, 15120, 122640, 1330560, 13335840, 136382400, 1657212480, 20860519680, 262278656640, 3585207225600, 52249374777600, 772773281280000, 11907924610982400, 193962388523904000, 3253343368231756800, 56051640629816832000
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[(x(1+x))^2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 18 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*(1+x))^2)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, i, j*binomial(2, j-2)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(2*k,n-2*k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=2..n} k * binomial(2,k-2) * a(n-k)/(n-k)!.
From Vaclav Kotesovec, Mar 25 2023: (Start)
a(n) ~ 2^(n/2 - 1) * exp(1/64 - 3*n^(1/4)/2^(13/2) - sqrt(n)/16 + n^(3/4)/sqrt(2) - 3*n/4) * n^(3*n/4).
a(n) = 2*(n-1)*a(n-2) + 6*(n-2)*(n-1)*a(n-3) + 4*(n-3)*(n-2)*(n-1)*a(n-4). (End)

A382134 Number of completely asymmetric matchings (not containing centered or coupled arcs) of [2n].

Original entry on oeis.org

1, 0, 0, 8, 48, 384, 4480, 59520, 897792, 15368192, 293769216, 6198589440, 143130972160, 3590253477888, 97214510235648, 2826205634330624, 87801981951344640, 2902989352269250560, 101776549707306237952, 3771425415371470405632, 147285455218020210180096
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2025

Keywords

Crossrefs

Programs

  • Maple
    g:= exp(-x-x^2)/sqrt(1-2*x) ;
    seq( coeftayl(g,x=0,n)*n!,n=0..10) ;

Formula

E.g.f: exp(-x-x^2)/sqrt(1-2*x).
a(n) = 2^n * A001205(n).
D-finite with recurrence a(n) +2*(-n+1)*a(n-1) -4*(n-1)*(n-2)*a(n-3)=0.
Previous Showing 61-70 of 73 results. Next