A376513
Expansion of e.g.f. exp(x^3 * (1 + x)).
Original entry on oeis.org
1, 0, 0, 6, 24, 0, 360, 5040, 20160, 60480, 1814400, 19958400, 99792000, 1037836800, 21794572800, 228843014400, 1743565824000, 29640619008000, 542423327846400, 6082255020441600, 70959641905152000, 1429329929803776000, 24977793950613504000
Offset: 0
A377956
a(n) = n! * Sum_{k=0..n} binomial(k+4,n-k) / k!.
Original entry on oeis.org
1, 5, 23, 103, 473, 2261, 11215, 57863, 309713, 1715653, 9831911, 58058375, 353546473, 2210900693, 14215319903, 93610866151, 632159025185, 4362925851653, 30809311250743, 221958273142823, 1632956199823481, 12238229941781845, 93509510960341103, 726913018468699463
Offset: 0
A115326
E.g.f.: exp(x/(1-2*x))/sqrt(1-4*x^2).
Original entry on oeis.org
1, 1, 9, 49, 625, 6561, 109561, 1697809, 35247969, 717436225, 17862589801, 448030761201, 13029739166929, 387070092765409, 12888060720104025, 441427773256896721, 16566268858818121921, 641658452161285040769
Offset: 0
-
CoefficientList[Series[E^(x/(1-2*x))/Sqrt[1-4*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)
RecurrenceTable[{a[0] == a[1] == 1, a[2] == 9, a[n] == (2 n - 1) a[n - 1] + 2 (n - 1) (2 n - 1) a[n - 2] - 8 (n - 2)^2 (n - 1) a[n - 3]}, a, {n, 20}] (* Bruno Berselli, Sep 27 2013 *)
Table[Abs[HermiteH[n, I/2]]^2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 11 2016 *)
-
a(n)=local(m=2);n!*polcoeff(exp(x/(1-m*x+x*O(x^n)))/sqrt(1-m^2*x^2+x*O(x^n)),n)
A195186
Number of palindromic double occurrence words of length 2n.
Original entry on oeis.org
1, 2, 6, 20, 72, 290, 1198, 5452, 25176, 125874, 637926, 3448708, 18919048, 109412210, 642798510, 3945170012, 24614491704, 159328958690, 1048645656646, 7122719571700, 49185991168968, 349097516604738, 2518145666958126, 18609525157571692, 139704193446510616
Offset: 1
-
A047974 := proc(n) option remember; if n= 1 then 1; elif n=2 then 3; else procname(n-1)+2*(n-1)*procname(n-2) ; end if; end proc:
A195186 := proc(n) if n <= 1 then 1; else A047974(n)-add(procname(n-2*k)*doublefactorial(2*k-1),k=1..floor(n/2)) ; end if; end proc:
seq(A195186(n),n=1..20) ; # R. J. Mathar, Sep 12 2011
-
b[n_] := Sum[Binomial[k, n - k]*(n!/k!), {k, 0, n}];
a[1] = 1; a[n_] := b[n] - Sum[a[n - 2*k]*(2*k - 1)!!, {k, 1, n/2}];
Array[a, 20] (* Jean-François Alcover, Nov 29 2017, after R. J. Mathar *)
A271218
Number of symmetric linked diagrams with n links and no simple link.
Original entry on oeis.org
1, 0, 1, 3, 12, 39, 167, 660, 3083, 13961, 70728, 355457, 1936449, 10587960, 61539129, 361182139, 2224641540, 13880534119, 90090083047, 593246514588, 4038095508691, 27905008440273, 198401618299920, 1432253086621377, 10600146578310209, 79639887325700592, 611739960145556273
Offset: 0
For n=0 the a(0)=1 solution is { ∅ }.
For n=1 there are no solutions since the link in a diagram with one link, 11, is simple.
For n=2 the a(2)=1 solution is { 1212 }.
For n=3 the a(3)=3 solutions are { 123123, 121323, 123231 }.
For n=4 the a(4)=12 solutions are { 12123434, 12132434, 12324341, 12314234, 12341234, 12342341, 12314324, 12341324, 12343412, 12343421, 12324143, 12342143 }.
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
-
RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,20}]
-
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); va;} \\ Michel Marcus, Jul 28 2020
Original entry on oeis.org
0, 1, 2, 9, 28, 125, 486, 2317, 10424, 53433, 267850, 1470161, 8032212, 46925749, 275437358, 1702883925, 10630404976, 69192858737, 455957606034, 3110617216153, 21512638153100, 153234193139181, 1107087138215542, 8206182165264029, 61703155328534568
Offset: 0
-
Table[n!*Sum[Binomial[i, n - 1 - i]/i!, {i, 0, n - 1}], {n, 0, 30}]
CoefficientList[Series[x*E^(x*(x+1)), {x, 0, 20}], x] * Range[0, 20]!
A354015
Expansion of e.g.f. 1/(1 - x)^(1 - log(1-x)).
Original entry on oeis.org
1, 1, 4, 18, 106, 750, 6188, 58184, 613156, 7149780, 91319712, 1267089912, 18969355656, 304646227704, 5222700792528, 95169251327040, 1836450816902928, 37403582826055824, 801728489886598848, 18037821249349491360, 424970923585819603872, 10462258547232790348512
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(1-log(1-x))))
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x)*(1-log(1-x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (1+2*sum(k=1, j-1, 1/k))*v[i-j+1]/(i-j)!)); v;
-
a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*abs(stirling(n, k, 1)));
A361036
a(n) = n! * [x^n] (1 + x)^n * exp(x*(1 + x)^n).
Original entry on oeis.org
1, 2, 11, 124, 2225, 56546, 1928707, 85029596, 4687436609, 314255427490, 25077179715131, 2343489559096412, 253185531592066801, 31279831940279656514, 4376923336721600128115, 687815536092999747916156, 120491486068612766739548417, 23378730923206887237941740226
Offset: 0
-
seq( n!*add(add(binomial(n,i+j)*binomial(j*n,i)/j!, j = 0..n-i), i = 0..n), n = 0..20);
-
Table[n! * Sum[Sum[Binomial[n, i + j]*Binomial[j*n, i]/j!, {j, 0, n - i}], {i, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 27 2023 *)
A361570
Expansion of e.g.f. exp( (x * (1+x))^2 ).
Original entry on oeis.org
1, 0, 2, 12, 36, 240, 2280, 15120, 122640, 1330560, 13335840, 136382400, 1657212480, 20860519680, 262278656640, 3585207225600, 52249374777600, 772773281280000, 11907924610982400, 193962388523904000, 3253343368231756800, 56051640629816832000
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[(x(1+x))^2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 18 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((x*(1+x))^2)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, i, j*binomial(2, j-2)*v[i-j+1]/(i-j)!)); v;
A382134
Number of completely asymmetric matchings (not containing centered or coupled arcs) of [2n].
Original entry on oeis.org
1, 0, 0, 8, 48, 384, 4480, 59520, 897792, 15368192, 293769216, 6198589440, 143130972160, 3590253477888, 97214510235648, 2826205634330624, 87801981951344640, 2902989352269250560, 101776549707306237952, 3771425415371470405632, 147285455218020210180096
Offset: 0
Comments