cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A048193 Number of chordal graphs (or triangulated graphs) on n vertices.

Original entry on oeis.org

1, 2, 4, 10, 27, 94, 393, 2119, 14524, 126758, 1392387, 19109099, 326005775, 6905776799, 181945055235
Offset: 1

Views

Author

Keywords

Comments

Graphs having no induced cycles of any length > 3, so every cycle in the graph has a chord, or is "triangulated".
All such graphs are perfect.
Euler transform of A048192. - Eric M. Schmidt, Mar 25 2015
Conjectured partial sums of A079456. - Sean A. Irvine, Jun 25 2022

Crossrefs

Cf. A048192 (connected chordal graphs).
Cf. A287427 (disconnected chordal graphs).
Cf. A048194.

Formula

a(n) = A048192(n) + A287427(n).

Extensions

Edited by N. J. A. Sloane, Jul 04 2008
a(12) added (using A048192) by Eric M. Schmidt, Mar 25 2015
a(13) and a(14) added (using A048192) by Falk Hüffner, Jan 15 2016
a(15) added (using A048192) by Jakub Jablonski, Sep 15 2020

A179534 Number of labeled split graphs on n vertices.

Original entry on oeis.org

1, 2, 8, 58, 632, 9654, 202484, 5843954, 233064944, 12916716526, 998745087980, 108135391731690, 16434082400952296, 3513344943520006118, 1058030578581541945316, 449389062270642095128546, 269419653009366144571801568, 228157953744571034350576205790
Offset: 1

Views

Author

Vladislav Bina, Jul 18 2010

Keywords

Comments

A split graph is a graph whose vertices can be partitioned into a clique and an independent set. - Justin M. Troyka, Oct 28 2018

References

  • V. Bina, Enumeration of Labeled Split Graphs and Counts of Important Superclasses. In Adacher L., Flamini, M., Leo, G., Nicosia, G., Pacifici, A., Picialli, V. (Eds.). CTW 2011, Villa Mondragone, Frascati, pp. 72-75 (2011).

Crossrefs

Programs

  • Maple
    A179534 := proc(n) local a,k; a := 1 ; for k from 2 to n do a := a+binomial(n,k)*( (2^k-1)^(n-k) -add(j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j)/(j+1), j=1..n-k) ) end do: a ; end proc: # R. J. Mathar, Jun 21 2011
  • Mathematica
    a[n_] := 1 + Sum[Binomial[n,k]*((2^k-1)^(n-k) - Sum[j*k*Binomial[n-k,j]*(2^(k-1)-1)^(n-k-j)/(j+1), {j,1,n-k}]), {k,2, n}]; Array[a, 20] (* Stefano Spezia, Oct 29 2018 *)
  • PARI
    b(n) = {sum(k=0, n, binomial(n, k)*2^(k*(n-k)))} \\ A047863(n)
    a(n) = b(n) - n*b(n-1) \\ Andrew Howroyd, Jun 06 2021

Formula

a(n) = 1 + Sum_{k=2..n} binomial(n,k)*( (2^k-1)^(n-k) - Sum_{j=1..n-k} j*k*binomial(n-k,j)*(2^(k-1)-1)^(n-k-j) /(j+1) ).
From Justin M. Troyka, Oct 28 2018: (Start)
a(n) = [ Sum_{k=0..n} binomial(n,k) 2^(k(n-k)) ] - [ n Sum_{k=0..n-1} binomial(n-1,k)*2^(k(n-k-1)) ] (see the Troyka link, Cor. 3.4).
a(n) = A047863(n) - n*A047863(n-1) (see the Troyka link, Cor. 3.4).
a(n) ~ A047863(n) (see Bender, Richmond, and Wormald, Cor. 1). (End)

Extensions

a(12)-a(16) corrected and terms a(17) and beyond from Andrew Howroyd, Jun 06 2021

A347699 Triangle read by rows: For n >= 1, 0 <= k <= n-1, T(n,k) = 0 if k=0, otherwise the number of inequivalent k X (n-k) 0,1 matrices having at least one 1 in each column.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5
Offset: 1

Views

Author

N. J. A. Sloane, Oct 13 2021

Keywords

Comments

It appears that this is essentially the same as the triangle in A055080, except that the 1's at the ends of the rows in A055080 have been moved to the start of the rows. (This is at present only a conjecture.)
Even if the conjecture turns out to be true, this triangle deserves its own entry because the arrays look so different.
The conjecture would imply the row sums are given by A048194.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  1,  2;
  1,  1,  4,  3;
  1,  1,  6,  9,  4;
  1,  1,  9, 23, 17,  5;
...
		

Crossrefs

A174122 Partial sums of A001831.

Original entry on oeis.org

1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0

Views

Author

Jonathan Vos Post, Mar 08 2010

Keywords

Comments

Partial sums of number of labeled graded partially ordered sets with n elements. The subsequence of primes in this partial sum begins: 2, 5, 12589.

Crossrefs

Formula

a(n) = SUM[i=0..n] A001831(i) = SUM[i=0..n] SUM[j=0..i] ((-1)^j*C(n,j)*A047863(j)).

A368761 Number of labeled split graphs on n vertices such that {1..k} is independent and {k+1..n} is a clique for some k in {0..n}.

Original entry on oeis.org

1, 2, 6, 24, 128, 928, 9280, 129152, 2515200, 68780544, 2647000064, 143580989440, 10988411686912, 1187350176604160, 181232621966082048, 39089521693818912768, 11916533065969825808384, 5135497592471003032846336, 3128995097443083790244380672, 2695613904312277811648715554816
Offset: 1

Views

Author

Robert Lauff and Manfred Scheucher, Jan 05 2024

Keywords

Comments

Also the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple abc we have X(ab)X(ac)X(bc) not in {++-,+--}.

Crossrefs

Cf. A048194.

Programs

  • Maple
    seq(1 + add((2^k-1)*2^((n-1-k)*k),k=1..n-1),n=1..20); # Georg Fischer_, May 28 2024
  • Python
    def f(n): return 1+sum((2**k-1)*2**((n-1-k)*k) for k in range(1,n))

Formula

a(n) = 1 + Sum_{k=1..n-1} (2^k-1)*2^((n-1-k)*k).

Extensions

a(20), a(21) joined by Georg Fischer, May 28 2024
Previous Showing 11-15 of 15 results.