cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 155 results. Next

A325378 a(n) = A162296(A228058(n)) - A048250(A228058(n)).

Original entry on oeis.org

30, 70, 90, 246, 150, 266, 190, 210, 678, 342, 270, 310, 654, 574, 370, 570, 450, 738, 930, 490, 510, 722, 550, 570, 798, 1582, 690, 1026, 750, 2034, 790, 1230, 1626, 1178, 870, 1526, 910, 970, 990, 2046, 1558, 1406, 1722, 1962, 1150, 1170, 1210, 4062, 1710, 1290, 3390, 1350, 1862, 1390, 1938, 1410, 2214, 1470, 3030
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A162296(n) - A048250(n),", ")));

Formula

a(n) = A162296(A228058(n)) - A048250(A228058(n)).
a(n) = A325319(n) + A325320(n).

A344999 a(n) = A048250(n) * A345001(n).

Original entry on oeis.org

-1, 0, -4, 9, -18, 60, -40, 33, 4, 90, -108, 240, -154, 120, 48, 93, -270, 288, -340, 468, 0, 180, -504, 672, -54, 210, 52, 768, -810, 3096, -928, 237, -192, 270, -480, 948, -1330, 300, -336, 1404, -1638, 5088, -1804, 1584, 648, 360, -2160, 1680, -216, 684, -720, 2100, -2754, 1116, -1584, 2400, -960, 450, -3420, 10080
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Cf. A345003 [gives k for which a(k) = A344998(k)], A345004, A345005.

Programs

Formula

a(n) = A048250(n) * A345001(n).
a(n) = A344998(n) - A345043(n).

A181797 a(n) = n multiplied by the sum of its squarefree divisors (A048250(n)).

Original entry on oeis.org

1, 6, 12, 12, 30, 72, 56, 24, 36, 180, 132, 144, 182, 336, 360, 48, 306, 216, 380, 360, 672, 792, 552, 288, 150, 1092, 108, 672, 870, 2160, 992, 96, 1584, 1836, 1680, 432, 1406, 2280, 2184, 720, 1722, 4032, 1892, 1584, 1080, 3312, 2256, 576, 392, 900
Offset: 1

Views

Author

Matthew Vandermast, Dec 05 2010

Keywords

Comments

Sum of reciprocals converges to Pi^2/6. The natural density of positive integers m such that A003557(m) = n equals 6/(a(n)*Pi^2).
If m is coprime to 6, a(3m) = a(4m).
Apparently the absolute values of the Dirichlet inverse of A000082. - R. J. Mathar, Mar 14 2011

Crossrefs

Programs

  • Maple
    A181797 := proc(n) local f; f := ifactors(n)[2] ;  mul( op(1,d)^op(2,d)*( op(1,d)+1),d=f) ; end proc: # R. J. Mathar, Dec 05 2010
  • Mathematica
    Table[n*Sum[d*MoebiusMu[d]^2, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *)
  • PARI
    a(n)=n*sumdiv(n,d,d*moebius(d)^2)
  • Sage
    A181797 = lambda n: n * sum(d for d in divisors(n) if is_squarefree(d)) # D. S. McNeil, Dec 05 2010
    

Formula

a(n) = n*A048250(n). Multiplicative with a(p^e) = (p+1)*p^e.
Dirichlet g.f. zeta(s-1)*zeta(s-2)/zeta(2*s-4). - R. J. Mathar, Mar 14 2011
G.f.: x*f'(x), where f(x) = Sum_{k>=1} mu(k)^2*k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 10 2017
Sum_{k=1..n} a(k) ~ n^3 / 3. - Vaclav Kotesovec, Feb 02 2019
Sum_{k>=1} 1/a(k) = Pi^2/6. - Vaclav Kotesovec, Sep 19 2020

A322021 Lexicographically earliest such sequence a that a(i) = a(j) => A046523(i) = A046523(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 26, 42, 43, 44, 45, 18, 42, 46, 47, 22, 42, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 54, 58, 61, 62, 63, 64, 26, 65, 54, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 52, 78, 79, 80, 81, 75, 82, 83, 26
Offset: 1

Views

Author

Antti Karttunen, Nov 29 2018

Keywords

Comments

Restricted growth sequence transform of A291758, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291758(i) = A291758(j) <=> A046523(i) = A046523(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
a(i) = a(j) => A304411(i) = A304411(j),
a(i) = a(j) => A304412(i) = A304412(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    v322021 = rgs_transform(vector(up_to, n, [A046523(n), A048250(n)]));
    A322021(n) = v322021[n];

A322318 a(n) = gcd(A003557(n), A048250(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[ Times@@ (First[#] ^(Last[#]-1)& /@  f), Times@@((#+1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
    A322318(n) = gcd(A048250(n), A003557(n));

Formula

a(n) = gcd(A003557(n), A048250(n)).
a(n) = A001615(n) / A322319(n).

A344754 Numbers k such that A344753(k) is a multiple of A048250(k).

Original entry on oeis.org

1, 6, 24, 28, 54, 96, 112, 150, 153, 216, 294, 384, 448, 486, 496, 528, 672, 726, 864, 1014, 1080, 1377, 1500, 1536, 1734, 1792, 1944, 1980, 1984, 2112, 2166, 2250, 2376, 2688, 3174, 3456, 3672, 3750, 4320, 4374, 4560, 4753, 5046, 5292, 5766, 6000, 6048, 6144, 6720, 7168, 7776, 7936, 8128, 8214, 8448, 8700, 8736, 9024
Offset: 1

Views

Author

Antti Karttunen, May 29 2021

Keywords

Crossrefs

Subsequences: A000396, A344755.
Cf. also A344700.

Programs

A351450 a(n) = A064989(A048250(A003961(n))).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 5, 2, 4, 2, 2, 1, 3, 2, 2, 1, 4, 5, 6, 2, 1, 4, 2, 2, 1, 2, 17, 1, 10, 3, 2, 2, 10, 2, 8, 1, 7, 4, 2, 5, 2, 6, 8, 2, 2, 1, 6, 4, 6, 2, 5, 2, 4, 1, 29, 2, 13, 17, 4, 1, 4, 10, 4, 3, 12, 2, 31, 2, 3, 10, 2, 2, 10, 8, 10, 1, 2, 7, 12, 4, 3, 2, 2, 5, 25, 2, 8, 6, 34, 8, 2
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2022

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A064989(n) = { my(f = factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A351450(n) = A064989(A048250(A003961(n)));

Formula

Multiplicative with a(p^e) = A064989(q+1), where q = nextPrime(p) = A151800(p).
a(n) = A064989(A048250(A003961(n))).

A291758 Compound filter (prime signature of n & sum of squarefree divisors of n): a(n) = P(A046523(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 8, 12, 19, 23, 142, 38, 53, 25, 259, 80, 265, 107, 412, 412, 169, 173, 265, 212, 418, 672, 826, 302, 619, 40, 1087, 63, 607, 467, 5080, 530, 593, 1384, 1717, 1384, 1117, 743, 2086, 1836, 844, 905, 7780, 992, 1093, 607, 2932, 1178, 1759, 59, 418, 2932, 1390, 1487, 619, 2932, 1105, 3576, 4471, 1832, 8575, 1955, 5056, 915, 2209, 3922, 14908, 2348, 2092, 5056
Offset: 1

Views

Author

Antti Karttunen, Sep 10 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A048250(n))^2) - A046523(n) - 3*A048250(n)).

A325315 Bitwise-XOR of absolute values of (n - A048250(n)) and (n - A162296(n)).

Original entry on oeis.org

1, 3, 2, 1, 4, 0, 6, 1, 5, 2, 10, 4, 12, 4, 6, 1, 16, 15, 18, 6, 30, 24, 22, 20, 19, 10, 30, 0, 28, 52, 30, 1, 46, 54, 46, 51, 36, 48, 54, 54, 40, 28, 42, 12, 28, 52, 46, 100, 41, 57, 38, 14, 52, 28, 38, 8, 46, 26, 58, 40, 60, 28, 22, 1, 82, 12, 66, 10, 94, 12, 70, 83, 72, 98, 42, 20, 94, 20, 78, 102, 105, 126, 82, 32, 66, 120, 118, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A003987, A028982 (positions of odd terms), A048250, A162296, A228058, A325310, A325313, A325314.

Programs

  • Mathematica
    Array[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 88] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));

Formula

a(n) = A003987(abs(A325313(n)), abs(A325314(n))).

A325376 Terms k of A228058 such that gcd(k - A048250(k), A162296(k) - k) = A162296(k) - k.

Original entry on oeis.org

153, 477, 801, 1773, 2097, 2421, 3725, 4041, 4689, 4753, 5013, 5337, 6309, 6957, 7281, 7929, 8577, 8725, 9549, 9873, 11225, 11493, 13437, 14357, 14409, 14733, 15381, 17001, 17973, 18621, 19269, 19917, 21213, 21537, 23481, 24777, 25101, 25749, 26073, 26225, 26721, 27369, 28989, 29161, 29313, 29961, 31225, 32229, 32553, 33849
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

Also, terms of this sequence are A228058(k) for all such k that A325375(k) = A325320(k).
In range 1 .. 2^27 there are no such terms k of A228058 that gcd(k-A048250(k), A162296(k)-k) = k - A048250(k).
If any odd perfect number exists, then it must occur in this sequence, but should also satisfy the other condition given above.

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n) && (gcd(n-A048250(n),A162296(n)-n) == A162296(n)-n),k++; print1(n,", ")));
Previous Showing 11-20 of 155 results. Next