cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 70 results. Next

A283624 Number of {0,1} n X n matrices with no rows or columns in which all entries are the same.

Original entry on oeis.org

1, 0, 2, 102, 22874, 17633670, 46959933962, 451575174961302, 16271255119687320314, 2253375946574190518740230, 1219041140314101911449662059402, 2601922592659455476330065914740044182, 22040870572750372076278589658097827953983034
Offset: 0

Views

Author

Robert FERREOL, Mar 12 2017

Keywords

Comments

Every row and column must contain both a 0 and a 1 .
a(n) is the number of relations on n labeled points such that for every point x there exists y,z,t,u such that xRy, zRx, not(xRt), and not(uRx).

Examples

			For n=2 the a(2)=2 matrices are
  0 1
  1 0
and
  1 0
  0 1
		

Crossrefs

Cf. A048291.
Diagonal of A283654.

Programs

  • Maple
    seq(2*sum((-1)^(n+k)*binomial(n,k)*(2^k-1)^n,k=0..n)+2^(n^2)+2*(2^n-2)^n-4*(2^n-1)^n,n=0..10)
  • Mathematica
    Table[If[n==0, 1, 2 Sum[(-1)^(n + k) * Binomial[n, k] * (2^k - 1)^n, {k, 0,n}] + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n], {n, 0, 12}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 12, print1(2*sum(k=0, n, (-1)^(n + k) * binomial(n, k) * (2^k - 1)^n) + 2^(n^2) + 2*(2^n - 2)^n - 4*(2^n - 1)^n,", ")) \\ Indranil Ghosh, Mar 12 2017
    
  • Python
    import math
    f = math.factorial
    def C(n, r): return f(n)//f(r)//f(n - r)
    def A(n):
        s=0
        for k in range(0, n+1):
            s+=(-1)**(n + k) * C(n, k) * (2**k -1)**n
        return 2*s + 2**(n**2) + 2*(2**n - 2)**n - 4*(2**n - 1)**n # Indranil Ghosh, Mar 12 2017

Formula

a(n) = 2*Sum_{k=0..n} ((-1)^(n+k)*binomial(n,k)*(2^k-1)^n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.
a(n) = 2*A048291(n) + 2^(n^2) + 2*(2^n-2)^n - 4*(2^n-1)^n.

Extensions

a(11)-a(12) from Indranil Ghosh, Mar 12 2017

A297008 Number of edge covers in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

4, 2902, 117207580, 268752741193822, 37231937318464496521924, 323097476641999571450657507823382, 178177528846515370073473806783721111760309500, 6274803675843247716007930604166972482973014660984656159102
Offset: 1

Views

Author

Eric W. Weisstein, Dec 23 2017

Keywords

Crossrefs

Programs

  • Mathematica
    b[m_, n_] := Sum[(-1)^j*Binomial[m, j]*If[n == 0, 1, (2^(m - j) - 1)^n], {j, 0, m}];
    c[n_, s_] := Sum[Binomial[n, k]*Binomial[n, s - k]*b[k, s - k], {k, Max[0, s - n], Min[n, s]}];
    a[n_] := Sum[c[n, 2*n - i]*Sum[(-1)^j*Binomial[i, j]*(2^(2*n - j) - 1)^n, {j, 0, i}], {i, 0, 2 n}];
    Array[a, 10] (* Jean-François Alcover, Dec 27 2017, after Andrew Howroyd *)
  • PARI
    \\ here b(m,n) is A183109.
    b(m, n)={sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n)}
    c(n, s)={sum(k=max(0, s-n), min(n, s),binomial(n, k)*binomial(n, s-k)*b(k, s-k))}
    a(n)={sum(i=0, 2*n, c(n, 2*n-i)*sum(j=0, i, (-1)^j*binomial(i, j)*(2^(2*n - j) - 1)^n))} \\ Andrew Howroyd, Dec 24 2017

Extensions

Terms a(4) and beyond from Andrew Howroyd, Dec 24 2017

A370165 Number of labeled loop-graphs covering n vertices without a non-loop edge with loops at both ends.

Original entry on oeis.org

1, 1, 4, 29, 400, 10289, 496548, 45455677, 7983420736, 2716094133313, 1803251169342820, 2348787270663723581, 6024912118926389490448, 30516957491540079828757553, 305811332460677494410532494660, 6071677788061208810793717466942237
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2024

Keywords

Comments

Number of ways to choose a stable vertex set of a simple graph with n vertices.

Examples

			The a(3) = 29 loop-graphs (loops shown as singletons):
  {1,23}   {1,2,3}     {1,2,13,23}
  {2,13}   {1,2,13}    {1,3,12,23}
  {3,12}   {1,2,23}    {2,3,12,13}
  {12,13}  {1,3,12}    {1,12,13,23}
  {12,23}  {1,3,23}    {2,12,13,23}
  {13,23}  {2,3,12}    {3,12,13,23}
           {2,3,13}
           {1,12,13}
           {1,12,23}
           {1,13,23}
           {2,12,13}
           {2,12,23}
           {2,13,23}
           {3,12,13}
           {3,12,23}
           {3,13,23}
           {12,13,23}
		

Crossrefs

Without loops we have A006129, connected A001187.
The non-covering version is A079491.
The unlabeled version is A370166, non-covering A339832.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts labeled loop-graphs (shifted left), covering A322661.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&!MatchQ[#, {_,{x_},_,{y_},_,{x_,y_},_}]&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(sum(k=0, n, exp((2^k-1)*x + O(x*x^n))*2^(k*(k-1)/2)*x^k/k!)))} \\ Andrew Howroyd, Feb 20 2024

Formula

Inverse binomial transform of A079491.
E.g.f.: Sum_{k >= 0} exp((2^k-1)*x)*2^(k*(k-1)/2)*x^k/k!. - Andrew Howroyd, Feb 20 2024

A300757 Number of {0,1} n X n matrices with at least one zero row or column.

Original entry on oeis.org

0, 1, 9, 247, 24033, 8556511, 11352479289, 57075144133687, 1103141820795719553, 82892911663509240924031, 24412686635953864779902802489, 28336114545173968837978876913225527, 130112343169670163804689528125616522784993, 2369443670415015818147708710186881118552006568671
Offset: 0

Views

Author

Lee A. Newberg, Mar 12 2018

Keywords

Crossrefs

Cf. A048291.

Formula

a(n) = 2^(n^2) - A048291(n).

A335609 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(4,n) (with n at least 2) complete bipartite graph missing one edge.

Original entry on oeis.org

26, 896, 18458, 316928, 5049626, 77860736, 1182865178, 17848076288, 268458094106, 4032033838976, 60516655913498, 908002911016448, 13621815273480986, 204339630665964416, 3065181271854043418, 45978326763617681408, 689679155263179402266, 10345217105634885213056
Offset: 2

Views

Author

Steven Schlicker, Jun 15 2020

Keywords

Comments

Number of {0,1} 4 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns.
Number of edge covers of a K(4,n) complete bipartite graph (with n at least 2) missing one edge.

Examples

			For n = 3, a(2) = 26.
		

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Array[7*15^(# - 1) - 16*7^(# - 1) + 4*3^# - 3 &, 18, 2] (* Michael De Vlieger, Jun 22 2020 *)
    LinearRecurrence[{26,-196,486,-315},{26,896,18458,316928},20] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    Vec(2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)) + O(x^20)) \\ Colin Barker, Jun 23 2020

Formula

a(n) = 7*15^(n-1) - 16*7^(n-1) + 4*3^n - 3.
From Colin Barker, Jun 23 2020: (Start)
G.f.: 2*x^2*(13 + 110*x + 129*x^2) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)).
a(n) = 26*a(n-1) - 196*a(n-2) + 486*a(n-3) - 315*a(n-4) for n>5.
(End)

A370166 Number of unlabeled loop-graphs covering n vertices without a non-loop edge with loops at both ends.

Original entry on oeis.org

1, 1, 3, 9, 36, 180, 1313, 14709, 277755, 9304977, 568315345, 63806703305, 13200565313255, 5042653259803433, 3567050969262370941, 4688444463558713135201, 11491940559865490367844649, 52719458629883487816297211441, 454220675869975957947658748125099
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2024

Keywords

Examples

			Representatives of the a(0) = 1 through a(3) = 9 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{1,2},{1,3}}
             {{1},{1,2}}  {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
                          {{1},{2},{1,3},{2,3}}
                          {{1},{1,2},{1,3},{2,3}}
		

Crossrefs

Without loops we have A002494, labeled A006129, connected A001349.
The non-covering version is A339832.
The labeled version is A370165, non-covering A079491 (apparently).
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts labeled loop-graphs (shifted left), covering A322661.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n] && !MatchQ[#,{_,{x_},_,{y_},_,{x_,y_},_}]&]]], {n,0,4}]

Formula

First differences of A339832 (the non-covering version).

A335610 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(5,n) (with n at least 2) complete bipartite graph missing one edge.

Original entry on oeis.org

80, 6800, 316928, 11784608, 397551920, 12828154160, 405380093408, 12683426301248, 394943123789840, 12269641330477520, 380755304897252288, 11809363300986469088, 366179512530595589360, 11352903763691009133680, 351960100658771425777568, 10911064386177197162304128
Offset: 2

Views

Author

Steven Schlicker, Jun 15 2020

Keywords

Comments

Number of {0,1} 5 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns.
Number of edge covers of a K(5,n) complete bipartite graph (with n at least 2) missing one edge.

Examples

			For n = 2, a(2) = 80.
		

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Mathematica
    Array[15*31^(# - 1) - 43*15^(# - 1) + 46*7^(# - 1) - 22*3^(# - 1) + 4 &, 16, 2] (* Michael De Vlieger, Jun 22 2020 *)

Formula

a(n) = 15*31^(n-1) - 43*15^(n-1) + 46*7^(n-1) - 22*3^(n-1) + 4.
From Stefano Spezia, Jul 04 2020: (Start)
G.f.: 16*x^2*(5 + 140*x + 593*x^2 + 522*x^3)/(1 - 57*x + 1002*x^2 - 6562*x^3 + 15381*x^4 - 9765*x^5).
a(n) = 57*a(n-1) - 1002*a(n-2) + 6562*a(n-3) - 15381*a(n-4) + 9765*a(n-5) for n > 6. (End)

A335611 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 2) missing one edge.

Original entry on oeis.org

242, 49208, 5049626, 397551920, 27839280002, 1845793079528, 119216755050026, 7602793781214560, 481851209165874962, 30446042035976733848, 1920876815510991751226, 121101364739596962016400, 7632056827800217741372322, 480902390923479550619876168
Offset: 2

Views

Author

Steven Schlicker, Jul 16 2020

Keywords

Comments

The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B of a complete bipartite graph K(6,n) (with n at least 2) missing one edge so that vertices that are connected by edges are the same Euclidean distance apart. This sequence gives the number of sets at each location on the line segment between A and B.
Number of {0,1} 6 X n (with n at least 2) matrices with one fixed zero entry and no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 2). This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing one edge.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Maple
    a:= proc(n) 31*63^(n-1)-106*31^(n-1)+145*15^(n-1) - 100*7^(n-1)+35*3^(n-1)-5 end proc: seq(a(n), n=2..20);
  • PARI
    Vec(2*x^2*(121 + 10084*x + 128086*x^2 + 372324*x^3 + 270585*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)) + O(x^18)) \\ Colin Barker, Jul 17 2020

Formula

a(n) = 31*63^(n-1) - 106*31^(n-1) + 145*15^(n-1) - 100*7^(n-1) + 35*3^(n-1) - 5.
From Colin Barker, Jul 17 2020: (Start)
G.f.: 2*x^2*(121 + 10084*x + 128086*x^2 + 372324*x^3 + 270585*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)).
a(n) = 120*a(n-1) - 4593*a(n-2) + 69688*a(n-3) - 428787*a(n-4) + 978768*a(n-5) - 615195*a(n-6) for n>7.
(End)

A335612 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the removed edges are incident to the same vertex in the three point part.

Original entry on oeis.org

32, 344, 2792, 20720, 148592, 1050824, 7387832, 51811040, 362965952, 2541627704, 17793992072, 124565738960, 871983556112, 6103955042984, 42727895751512, 299095901612480, 2093673205343072, 14655718119568664, 102590043883482152
Offset: 3

Views

Author

Steven Schlicker, Jul 16 2020

Keywords

Comments

The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B (with |A| = 3) of a complete bipartite graph K(3,n) (with n at least 3) missing two edges, where the removed edges are incident to the same point in A. Points in the sets A and B that correspond to vertices that are connected by edges are the same Euclidean distance apart. This sequence gives the number of sets at each location on the line segment between the sets A and B.
Number of {0,1} 3 X n matrices (with n at least 3) with two fixed zero entries in the same row and no zero rows or columns.
Take a complete bipartite graph K(3,n) (with n at least 3) having parts A and B where |A| = 3. This sequence gives the number of edge covers of the graph obtained from this K(3,n) graph after removing two edges, where the two removed edges are incident to the same vertex in A.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Maple
    a:= proc(n) 9*7^(n-2)-11*3^(n-2)+2 end proc: seq(a(n), n=3..21);
  • PARI
    Vec(8*x^3*(4 - x) / ((1 - x)*(1 - 3*x)*(1 - 7*x)) + O(x^25)) \\ Colin Barker, Jul 17 2020

Formula

a(n) = 9*7^(n-2) - 11*3^(n-2) + 2.
From Colin Barker, Jul 17 2020: (Start)
G.f.: 8*x^3*(4 - x) / ((1 - x)*(1 - 3*x)*(1 - 7*x)).
a(n) = 11*a(n-1) - 31*a(n-2) + 21*a(n-3) for n>5.
(End)

A337417 Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a complete bipartite graph K(6,n) (with n at least 3) missing two edges, where the removed edges are incident to the same vertex in the six point part.

Original entry on oeis.org

16322, 2145368, 183405386, 13292505200, 895227774482, 58252080636488, 3728244541647386, 236702709858383840, 14969004415531532642, 944809197018309879608, 59577646546802243102186, 3755087128633478474841680, 236623057112566045886497202, 14908882367276213189083986728
Offset: 3

Views

Author

Steven Schlicker, Aug 26 2020

Keywords

Comments

The Hausdorff metric defines a distance between sets. Using this distance we can define line segments with sets as endpoints. Create two sets from the vertices of the parts A and B (with |A| = 6) of a complete bipartite graph K(6,n) (with n at least 3) missing two edges, where the removed edges are incident to the same point in A. Points in the sets A and B that correspond to vertices that are connected by edges are the same Euclidean distance apart. This sequence tells the number of sets at each location on the line segment between A and B.
Number of {0,1} 6 X n (with n at least 3) matrices with two fixed zero entries in the same row and no zero rows or columns.
Take a complete bipartite graph K(6,n) (with n at least 3) having parts A and B where |A| = 6. This sequence gives the number of edge covers of the graph obtained from this K(6,n) graph after removing two edges, where the two removed edges are incident to the same vertex in A.

References

  • S. Schlicker, R. Vasquez, R. Wofford, Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs. In preparation.

Crossrefs

Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

Programs

  • Maple
    a:= proc(n) 961*63^(n-2)-2086*31^(n-2)+1615*15^(n-2) - 580*7^(n-2)+95*3^(n-2) -5 end proc: seq(a(n), n=3..20);
  • PARI
    Vec(2*x^3*(8161 + 93364*x + 464086*x^2 + 43284*x^3 + 172305*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)) + O(x^15)) \\ Colin Barker, Nov 19 2020

Formula

a(n) = 961*63^(n-2) - 2086*31^(n-2) + 1615*15^(n-2) - 580*7^(n-2) + 95*3^(n-2) - 5.
From Colin Barker, Nov 19 2020: (Start)
G.f.: 2*x^3*(8161 + 93364*x + 464086*x^2 + 43284*x^3 + 172305*x^4) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 15*x)*(1 - 31*x)*(1 - 63*x)).
a(n) = 120*a(n-1) - 4593*a(n-2) + 69688*a(n-3) - 428787*a(n-4) + 978768*a(n-5) - 615195*a(n-6) for n>8.
(End)
Previous Showing 51-60 of 70 results. Next