cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 108 results. Next

A128566 Number of permutations of {1..n} with n inversions.

Original entry on oeis.org

1, 0, 0, 1, 5, 22, 90, 359, 1415, 5545, 21670, 84591, 330121, 1288587, 5032235, 19664205, 76893687, 300895513, 1178290263, 4617369760, 18106447251, 71048746505, 278966179936, 1095987764828, 4308300939450, 16944940572831, 66680029591816, 262519664110588
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Crossrefs

Diagonal of A008302 (Mahonian numbers).
Column 2 of A128564.
Cf. A128565 (column 1), A214086, A048651.

Programs

  • Maple
    a:= n-> coeff(series(mul((1-q^j)/(1-q), j=1..n), q, n+1), q, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 05 2013
  • Mathematica
    Table[SeriesCoefficient[QPochhammer[x, x, n]/(1-x)^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, May 13 2016 *)
  • PARI
    {a(n)=polcoeff(prod(j=1, n, (1-q^j)/(1-q)),n,q)}

Formula

a(n) = A008302(n,n) = coefficient of q^n in the q-factorial of n.
a(n) = T(n,n) with T(n,k) = T(n-1,k) + Sum_{j=1..n-1} T(n-1,k-j) for n>=0, k>0; T(n,k) = 0 for n<0; T(n,0) = 1 for n>=0. - Alois P. Heinz, Mar 07 2013
a(n) ~ c * 2^(2*n-1) / sqrt(Pi*n), where c = A048651 = QPochhammer[1/2] = 0.28878809508660242127889972192923... . - Vaclav Kotesovec, Sep 07 2014

Extensions

Edited by Alois P. Heinz, Mar 05 2013

A132267 Decimal expansion of Product_{k>0} (1-1/11^k).

Original entry on oeis.org

9, 0, 0, 8, 3, 2, 7, 0, 6, 8, 0, 9, 7, 1, 5, 2, 7, 9, 9, 4, 9, 8, 6, 2, 6, 9, 4, 7, 6, 0, 6, 4, 7, 7, 4, 4, 7, 6, 2, 4, 9, 1, 1, 9, 2, 2, 1, 6, 6, 3, 9, 5, 2, 4, 0, 2, 1, 4, 6, 1, 7, 2, 4, 8, 8, 0, 6, 5, 7, 0, 8, 7, 0, 6, 7, 0, 9, 7, 5, 8, 5, 6, 7, 0, 0, 1, 6, 3, 9, 2, 9, 9, 1, 9, 9, 2, 8, 3, 5, 6, 4, 6, 5, 2, 0
Offset: 0

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Examples

			0.900832706809715279949862694760...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; NProduct[1-1/11^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    N[QPochhammer[1/11, 1/11], 200] (* G. C. Greubel, Dec 20 2015 *)
  • PARI
    prodinf(x=1, 1-1/11^x) \\ Altug Alkan, Dec 20 2015

Formula

Equals exp(-Sum_{n>0} sigma_1(n)/(n*11^n)) = exp(-Sum_{n>0} A000203(n)/(n*11^n)).
Equals (1/11; 1/11){infinity}, where (a;q){infinity} is the q-Pochhammer symbol. - G. C. Greubel, Dec 20 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(11)) * exp(log(11)/24 - Pi^2/(6*log(11))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(11))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027879(n). (End)

A303346 Expansion of Product_{n>=1} ((1 + 2*x^n)/(1 - 2*x^n))^(1/2).

Original entry on oeis.org

1, 2, 4, 10, 18, 38, 72, 142, 260, 510, 940, 1814, 3362, 6490, 12112, 23466, 44114, 85766, 162516, 317190, 604806, 1184682, 2271248, 4461514, 8591784, 16916490, 32696708, 64496130, 125037142, 247007142, 480077432, 949510526, 1849375796, 3661330398, 7144215452
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
    nmax = 30; CoefficientList[Series[Sqrt[-QPochhammer[-2, x] / (3*QPochhammer[2, x])], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+2*x^k)/(1-2*x^k))^(1/2)))

Formula

a(n) ~ 2^n / sqrt(c*Pi*n), where c = A048651 * A083864 = 1/2 * Product_{j>=1} (2^j-1)/(2^j+1) = 0.06056210400129025123042464659093375290492912341... - Vaclav Kotesovec, Apr 22 2018

A005327 Certain subgraphs of a directed graph (inverse binomial transform of A005321).

Original entry on oeis.org

1, 0, 1, 6, 91, 2820, 177661, 22562946, 5753551231, 2940064679040, 3007686166657921, 6156733583148764286, 25211824022994189751171, 206510050572345408251841660, 3383254158526734823389921915781
Offset: 1

Views

Author

Keywords

Comments

q-Subfactorial for q=2. - Vladimir Reshetnikov, Sep 12 2016

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
  • T. L. Greenough and T. Lockman, Representation and enumeration of interval orders and semiorders, Ph.D. Thesis, Dartmouth, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    p:=proc(n) if n=0 then 1 else product(2^i-1,i=1..n) fi end: a:=n->p(n-1)*sum((-1)^j/p(j),j=0..n-1): seq(a(n),n=1..17); # Emeric Deutsch, Jan 23 2005
  • Mathematica
    a[1] = 1; a[n_] := a[n] = (2^(n-1)-1)*a[n-1] + (-1)^(n-1); Array[a, 15] (* Jean-François Alcover, Apr 05 2016, after Max Alekseyev *)
    With[{q = 2}, Table[QFactorial[n, q] Sum[(-1)^k/QFactorial[k, q], {k, 0, n}], {n, 0, 20}]] (* Vladimir Reshetnikov, Sep 12 2016 *)

Formula

For n>1, a(n) = (2^(n-1)-1)*a(n-1) + (-1)^(n-1). - Max Alekseyev, Feb 23 2012
a(n) = p(n-1)*sum((-1)^j/p(j), j=0..n-1), where p(0) = 1, p(k) = product(2^i-1, i=1..k) for k>0. - Emeric Deutsch, Jan 23 2005
a(n) ~ A048651^2 * 2^(n*(n-1)/2). - Vaclav Kotesovec, Oct 09 2019

Extensions

More terms from Max Alekseyev, Apr 27 2010

A007950 Binary sieve: delete every 2nd number, then every 4th, 8th, etc.

Original entry on oeis.org

1, 3, 5, 9, 11, 13, 17, 21, 25, 27, 29, 33, 35, 37, 43, 49, 51, 53, 57, 59, 65, 67, 69, 73, 75, 77, 81, 85, 89, 91, 97, 101, 107, 109, 113, 115, 117, 121, 123, 129, 131, 133, 137, 139, 145, 149, 153, 155, 157, 161, 163, 165, 171, 173, 177, 179, 181, 185, 187, 195, 197
Offset: 1

Views

Author

R. Muller

Keywords

Comments

From Charles T. Le (charlestle(AT)yahoo.com), Mar 22 2004: (Start)
This sequence and A007951 are particular cases of the Smarandache n-ary sequence sieve (for n=2 and respectively n=3).
Definition of Smarandache n-ary sieve (n >= 2): Starting to count on the natural numbers set at any step from 1: - delete every n-th numbers; - delete, from the remaining numbers, every (n^2)-th numbers; ... and so on: delete, from the remaining ones, every (n^k)-th numbers, k = 1, 2, 3, ... .
Conjectures: there are infinitely many primes that belong to this sequence; also infinitely many composite numbers.
Smarandache general-sequence sieve: Let u_i > 1, for i = 1, 2, 3, ..., be a strictly increasing positive integer sequence. Then from the natural numbers: - keep one number among 1, 2, 3, ..., u_1 - 1 and delete every u_1 -th numbers; - keep one number among the next u_2 - 1 remaining numbers and delete every u_2 -th numbers; ... and so on, for step k (k >= 1): - keep one number among the next u_k - 1 remaining numbers and delete every u_k -th numbers; ... (End)
Certainly this sequence contains infinitely many composite numbers, as it has finite density A048651, while the primes have zero density. - Franklin T. Adams-Watters, Feb 25 2011

References

  • F. Smarandache, Properties of Numbers, 1972.

Crossrefs

Programs

  • Mathematica
    t = Range@200; f[n_] := Block[{k = 2^n}, t = Delete[t, Table[{k}, {k, k, Length@t, k}]]]; Do[ f@n, {n, 6}]; t (* Robert G. Wilson v, Sep 14 2006 *)

Extensions

More terms from Robert G. Wilson v, Sep 14 2006

A001892 Number of permutations of (1,...,n) having n-2 inversions (n>=2).

Original entry on oeis.org

1, 2, 5, 15, 49, 169, 602, 2191, 8095, 30239, 113906, 431886, 1646177, 6301715, 24210652, 93299841, 360490592, 1396030396, 5417028610, 21056764914, 81978913225, 319610939055, 1247641114021, 4875896455975, 19075294462185, 74696636715792, 292758662041150
Offset: 2

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(4)=5  because we have 1342, 1423, 2143, 2314, and 3124.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := (x,n)->product((1-x^j)/(1-x),j=1..n); seq(coeff(series(f(x,n),x,n+2),x,n-2), n=2..40);
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-2}],{n,2,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-3)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.288788095... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, Maple code, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A001893 Number of permutations of (1,...,n) having n-3 inversions (n>=3).

Original entry on oeis.org

1, 3, 9, 29, 98, 343, 1230, 4489, 16599, 61997, 233389, 884170, 3366951, 12876702, 49424984, 190297064, 734644291, 2842707951, 11022366544, 42815701060, 166583279325, 649063995030, 2532267577126, 9891097066760, 38676401680776, 151381995733542, 593053313030007
Offset: 3

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(4)=3  because we have 1243, 1324, and 2134.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := (x,n)->product((1-x^j)/(1-x),j=1..n); seq(coeff(series(f(x,n),x,n+2),x,n-3), n=3..40); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-3}],{n,3,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-4)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A001894 Number of permutations of {1,...,n} having n-4 inversions (n>=4).

Original entry on oeis.org

1, 4, 14, 49, 174, 628, 2298, 8504, 31758, 119483, 452284, 1720774, 6574987, 25214332, 96997223, 374153699, 1446677555, 5605337934, 21758936146, 84604366100, 329453055975, 1284626463105, 5015200610785, 19601107218591, 76685359017750, 300294650988857, 1176939165980809
Offset: 4

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(5)=4  because we have 21345, 13245, 12435, and 12354.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := (x,n)->product((1-x^j)/(1-x),j=1..n); seq(coeff(series(f(x,n),x,n+2),x,n-4), n=4..40); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-4}],{n,4,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-5)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A104404 Number of groups of order n all of whose subgroups are normal.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 2, 12, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 5, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

Comments

A finite non-Abelian group has all of its subgroups normal precisely when it is the direct product of the quaternion group of order 8, a (possibly trivial) elementary Abelian 2-group, and an Abelian group of odd order. [Carmichael, p. 114] - Eric M. Schmidt, Jan 12 2014

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; b[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=b[e[n]]; h[n_]:=0; a[n_]:= b[n]+h[n];
  • PARI
    a(n)={my(e=valuation(n, 2)); my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i]))*(numbpart(e) + (e>=3))} \\ Andrew Howroyd, Aug 08 2018

Formula

The number a(n) of all groups of order n all of whose subgroups are normal is given as a(n) = b(n) + h(n), where b(n) denotes the number of Abelian groups of order n and h(n) denotes the number of Hamiltonian groups of order n.
a(n) = A000688(n) + A104488(n). - Andrew Howroyd, Aug 08 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * (1 + A048651/4) = 2.46053840757488111675... . - Amiram Eldar, Sep 23 2023

Extensions

Keyword:mult added by Andrew Howroyd, Aug 08 2018

A203011 (n-1)-st elementary symmetric function of {1,3,7,15,31,63,...-1+2^n}.

Original entry on oeis.org

1, 4, 31, 486, 15381, 978768, 124918731, 31932406170, 16337382642945, 16723323142761060, 34243057328337866295, 140246638967945496322350, 1148847521944847479468879725, 18822284044001939139425413111800, 616761496621711735518439444437389475
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Crossrefs

Cf. A122743.

Programs

  • Maple
    SymmPolyn := proc(L::list,n::integer)
        local c,a,sel;
        a :=0 ;
        sel := combinat[choose](nops(L),n) ;
        for c in sel do
            a := a+mul(L[e],e=c) ;
        end do:
        a;
    end proc:
    A203011 := proc(n)
        local L,k ;
        L := [seq(2^k-1,k=1..n)] ;
        SymmPolyn(L,n-1) ;
    end proc: # R. J. Mathar, Sep 23 2016
  • Mathematica
    f[k_] := -1 + 2^k; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A203011 *)
    Table[Product[2^k-1,{k,1,n}] * Sum[1/(2^k-1),{k,1,n}],{n,1,16}] (* Vaclav Kotesovec, Sep 06 2014 *)

Formula

a(n) = c * 2^(n*(n+1)/2), where c = A048651 * A065442 = 0.4639944324508904477884... . - Vaclav Kotesovec, Oct 10 2016
Previous Showing 41-50 of 108 results. Next