cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 108 results. Next

A005283 Number of permutations of (1,...,n) having n-5 inversions (n>=5).

Original entry on oeis.org

1, 5, 20, 76, 285, 1068, 4015, 15159, 57486, 218895, 836604, 3208036, 12337630, 47572239, 183856635, 712033264, 2762629983, 10736569602, 41788665040, 162869776650, 635562468075, 2482933033659, 9710010151831, 38008957336974, 148912655255315, 583885852950802
Offset: 5

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(6)=5 because we have 213456, 132456, 124356, 123546, and 123465.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f := (x,n)->product((1-x^j)/(1-x),j=1..n); seq(coeff(series(f(x,n),x,n+2),x,n-5), n=5..40); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-5}],{n,5,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-6)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A005284 Number of permutations of (1,...,n) having n-6 inversions (n>=6).

Original entry on oeis.org

1, 6, 27, 111, 440, 1717, 6655, 25728, 99412, 384320, 1487262, 5762643, 22357907, 86859412, 337879565, 1315952428, 5131231668, 20029728894, 78265410550, 306109412100, 1198306570554, 4694809541046, 18407850118383
Offset: 6

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(7)=6 because we have 2134567, 1324567, 1243567, 1235467, 1234657 and 1234576.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; seq(g(j+6,j),j=0..30); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-6}],{n,6,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-7)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A005285 Number of permutations of (1,...,n) having n-7 inversions (n>=7).

Original entry on oeis.org

1, 7, 35, 155, 649, 2640, 10569, 41926, 165425, 650658, 2554607, 10020277, 39287173, 154022930, 603919164, 2368601685, 9293159292, 36476745510, 143239635450, 562744102479, 2211876507387, 8697839966552, 34218338900591
Offset: 7

Views

Author

Keywords

Comments

Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014

Examples

			a(8)=7 because we have 21345678, 13245678, 12435678, 12354678, 12346578, 12345768, and 12345687.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    g := proc(n,k) option remember; if k=0 then return(1) else if (n=1 and k=1) then return(0) else if (k<0 or k>binomial(n,2)) then return(0) else g(n-1,k)+g(n,k-1)-g(n-1,k-n) end if end if end if end proc; seq(g(j+7,j),j=0..30); # Barbara Haas Margolius, May 31 2001
  • Mathematica
    Table[SeriesCoefficient[Product[(1-x^j)/(1-x),{j,1,n}],{x,0,n-7}],{n,7,25}] (* Vaclav Kotesovec, Mar 16 2014 *)

Formula

a(n) = 2^(2*n-8)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014

Extensions

More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014

A101872 Number of Abelian groups of order 2n.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 5, 2, 2, 1, 3, 1, 2, 1, 7, 1, 4, 1, 3, 1, 2, 1, 5, 2, 2, 3, 3, 1, 2, 1, 11, 1, 2, 1, 6, 1, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1, 7, 2, 4, 1, 3, 1, 6, 1, 5, 1, 2, 1, 3, 1, 2, 2, 15, 1, 2, 1, 3, 1, 2, 1, 10, 1, 2, 2, 3, 1, 2, 1, 7, 5, 2, 1, 3, 1, 2, 1, 5, 1, 4, 1, 3, 1, 2, 1, 11, 1, 4, 2, 6, 1, 2, 1, 5
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Crossrefs

Bisection of A000688.
Cf. also A101876 (bisection of this sequence).

Programs

  • Mathematica
    Table[FiniteAbelianGroupCount[2 k], {k, 1, 100}] (* Geoffrey Critzer, Dec 29 2014 *)
  • PARI
    A101872(n) = factorback(apply(e -> numbpart(e),factor(2*n)[,2])); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = A000688(2n).
Multiplicative with a(2^k) = A000041(1+k), and for odd primes p, a(p^k) = A000041(k), where A000041(k) is the number of partitions of k. - Antti Karttunen, Sep 27 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (1-A048651) * A021002 = 3.26425865613408900779... . - Amiram Eldar, Sep 23 2023

Extensions

More terms from Joshua Zucker, May 10 2006

A101876 Number of Abelian groups of order 4n.

Original entry on oeis.org

2, 3, 2, 5, 2, 3, 2, 7, 4, 3, 2, 5, 2, 3, 2, 11, 2, 6, 2, 5, 2, 3, 2, 7, 4, 3, 6, 5, 2, 3, 2, 15, 2, 3, 2, 10, 2, 3, 2, 7, 2, 3, 2, 5, 4, 3, 2, 11, 4, 6, 2, 5, 2, 9, 2, 7, 2, 3, 2, 5, 2, 3, 4, 22, 2, 3, 2, 5, 2, 3, 2, 14, 2, 3, 4, 5, 2, 3, 2, 11, 10, 3, 2, 5, 2, 3, 2, 7, 2, 6, 2, 5, 2, 3, 2, 15, 2, 6, 4, 10, 2
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2005

Keywords

Crossrefs

Bisection of A101872, quadrisection of A000688.

Programs

  • Mathematica
    a[n_] := FiniteAbelianGroupCount[4*n]; Array[a, 100] (* Amiram Eldar, Sep 23 2023*)
  • PARI
    A101876(n) = factorback(apply(e -> numbpart(e),factor(4*n)[,2])); \\ Antti Karttunen, Sep 27 2018

Formula

a(n) = A000688(4*n). - Antti Karttunen, Sep 27 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (4 - 6 * A048651) * A021002 = 5.20306278505563943501... . - Amiram Eldar, Sep 23 2023

Extensions

More terms from Joshua Zucker, May 10 2006

A104488 Number of Hamiltonian groups of order n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Boris Horvat (Boris.Horvat(AT)fmf.uni-lj.si), Gasper Jaklic (Gasper.Jaklic(AT)fmf.uni-lj.si), Tomaz Pisanski, Apr 19 2005

Keywords

References

  • Robert D. Carmichael, Introduction to the Theory of Groups of Finite Order, New York, Dover, 1956.
  • John C. Lennox and Stewart. E. Stonehewer, Subnormal Subgroups of Groups, Oxford University Press, 1987.

Crossrefs

Programs

  • Mathematica
    orders[n_]:=Map[Last, FactorInteger[n]]; a[n_]:=Apply[Times, Map[PartitionsP, orders[n]]]; e[n_]:=n/ 2^IntegerExponent[n, 2]; h[n_]/;Mod[n, 8]==0:=a[e[n]]; h[n_]:=0;
    (* Second program: *)
    a[n_] := If[Mod[n, 8]==0, FiniteAbelianGroupCount[n/2^IntegerExponent[n, 2]], 0]; Array[a, 102] (* Jean-François Alcover, Sep 14 2019 *)
  • PARI
    a(n)={my(e=valuation(n, 2)); if(e<3, 0, my(f=factor(n/2^e)[, 2]); prod(i=1, #f, numbpart(f[i])))} \\ Andrew Howroyd, Aug 08 2018

Formula

Let n = 2^e*o, where e = e(n) >= 0 and o = o(n) is an odd number. The number h(n) of Hamiltonian groups of order n is given by h(n) = 0, if e(n) < 3 and h(n) = a(o(n)), otherwise, where a(n) = A000688(n) denotes the number of Abelian groups of order n.
a(8*n) = A000688(A000265(n)), a(n) = 0 for n mod 8 <> 0. - Andrew Howroyd, Aug 08 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A021002 * A048651 / 4 = 0.16568181590156732257... . - Amiram Eldar, Sep 23 2023

A132028 Product{0<=k<=floor(log_4(n)), floor(n/4^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 16, 18, 20, 22, 36, 39, 42, 45, 64, 68, 72, 76, 100, 105, 110, 115, 144, 150, 156, 162, 196, 203, 210, 217, 512, 528, 544, 560, 648, 666, 684, 702, 800, 820, 840, 860, 968, 990, 1012, 1034, 1728, 1764, 1800, 1836, 2028, 2067, 2106, 2145, 2352
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-4 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(26)=floor(26/4^0)*floor(26/4^1)*floor(26/4^2)=26*6*1=156; a(34)=544 since 34=202(base-4) and so
a(34)=202*20*2(base-4)=34*8*2=544.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

Recurrence: a(n)=n*a(floor(n/4)); a(n*4^m)=n^m*4^(m(m+1)/2)*a(n).
a(k*4^m)=k^(m+1)*4^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_4(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_4(n)))/4^((1+floor(log_4(n)))*floor(log_4(n))/2); equality holds for n=k*4^m, 0=0. b(n) can also be written n^(1+floor(log_4(n)))/4^A000217(floor(log_4(n))).
Also: a(n)<=2^(1/4)*n^((1+log_4(n))/2)=1.189207...*4^A000217(log_4(n)), equality holds for n=2*4^m, m>=0.
a(n)>c*b(n), where c=0.4194224417951075977... (see constant A132020).
Also: a(n)>c*2^(1/4)*n^((1+log_4(n))/2)=0.498780...*4^A000217(log_4(n)).
lim inf a(n)/b(n)=0.4194224417951075977..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_4(n))/2)=0.4194224417951075977...*2^(1/4), for n-->oo.
lim sup a(n)/n^((1+log_4(n))/2)=2^(1/4), for n-->oo.
lim inf a(n)/a(n+1)=0.4194224417951075977... for n-->oo (see constant A132020).

A152537 Convolution sequence: this sequence convolved with A000041 gives powers of 2, (A000079).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 18, 37, 74, 148, 296, 592, 1183, 2366, 4732, 9463, 18926, 37852, 75704, 151408, 302816, 605632, 1211265, 2422530, 4845060, 9690120, 19380241, 38760482, 77520964, 155041928, 310083856, 620167712, 1240335424, 2480670848, 4961341696, 9922683391
Offset: 0

Author

Gary W. Adamson, Dec 06 2008

Keywords

Comments

Terms are very similar to those of A178841. - Georg Fischer, Mar 23 2019

Examples

			a(5) = 9 = 32 - 23 = (32 - ((7,5,3,2,1) dot (1,1,1,2,4)))
(1,1,2,3) convolved with (1,1,1,2) = 8, where (1,1,2,3...) = the first four partition numbers.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          2^n-add(combinat[numbpart](j)*a(n-j), j=1..n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Feb 02 2025
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1-x^k, {k, 1, nmax}] / (1-2*x), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 02 2018 *)
  • PARI
    /* computation by definition (division of power series) */
    N=55;
    A000079=vector(N,n,2^(n-1));
    S000079=Ser(A000079);
    A000041=vector(N,n,numbpart(n-1));
    S000041=Ser(A000041);
    S152537=S000079/S000041;
    A152537=Vec(S152537) /* show terms */  /* Joerg Arndt, Feb 06 2011 */
    
  • PARI
    /* computation using power series eta(x) and 1/(1-2*x) */
    x='x+O('x^55);  S152537=eta(x)/(1-2*x);
    A152537=Vec(S152537) /* show terms */  /* Joerg Arndt, Feb 06 2011 */

Formula

Construct an array of rows such that n-th row = partial sums of (n-1)-th row of A010815: (1, -1, -1, 0, 0, 1, 0, 1,...).
A152537 = sums of antidiagonal terms of the array.
The sequence may be obtained directly from the following set of operations:
Our given sequence = A000041: (1, 1, 2, 3, 5, 7, 11,...). Delete the first "1" then consider (1, 2, 3, 5, 7, 11,...) as an operator Q which we write in reverse with 1,2,3,...terms for each operation. Letting R = the target sequence (1,2,4,8,...); we begin a(0) = 1, a(1) = 1, then perform successive operations of: "next term in (1,2,4,...) - dot product of Q*R" where Q is written right to left and R (the ongoing result) written left to right).
Examples: Given 4 terms Q, R, we have: (5,3,2,1) dot (1,1,1,2) = (5+3+2+2) = 12, which we subtract from 16, = 4.
Given 5 terms of Q,R and A152537, we have (7,5,3,2,1) dot (1,1,1,2,4) = 23 which is subtracted from 32 giving 9. Continue with analogous operations to generate the series.
a(n) = Sum_{j=0..n} A010815(j)*2^(n-j). G.f.: A000079(x)/A000041(x) = A010815(x)/(1-2x), where A......(x) denotes the g.f. of the associated sequence. - R. J. Mathar, Dec 09 2008
a(n) ~ c * 2^n, where c = A048651 = 0.28878809508660242127889972192923078... - Vaclav Kotesovec, Jun 02 2018
a(n) = 2^n - Sum_{j=1..n} A000041(j)*a(n-j). - Alois P. Heinz, Feb 02 2025

A259401 a(n) = Sum_{k=0..n} 2^(n-k)*p(k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 3, 8, 19, 43, 93, 197, 409, 840, 1710, 3462, 6980, 14037, 28175, 56485, 113146, 226523, 453343, 907071, 1814632, 3629891, 7260574, 14522150, 29045555, 58092685, 116187328, 232377092, 464757194, 929518106, 1859040777, 3718087158, 7436181158, 14872370665
Offset: 0

Author

Vaclav Kotesovec, Jun 26 2015

Keywords

Comments

In general, Sum_{k=0..n} (m^(n-k) * p(k)) ~ m^n / QPochhammer[1/m, 1/m], for m > 1.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          2*a(n-1)+combinat[numbpart](n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Dec 03 2019
  • Mathematica
    Table[Sum[2^(n-k)*PartitionsP[k],{k,0,n}],{n,0,50}]
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*numbpart(k)); \\ Michel Marcus, Dec 03 2019

Formula

a(n) ~ c * 2^n, where c = 1/A048651 = 1/QPochhammer[1/2, 1/2] = 3.462746619455...
G.f.: (1/(1 - 2*x)) * Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Dec 03 2019

A335764 Decimal expansion of Sum_{k>=1} sigma(k)/(k*2^k) where sigma(k) is the sum of divisors of k (A000203).

Original entry on oeis.org

1, 2, 4, 2, 0, 6, 2, 0, 9, 4, 8, 1, 2, 4, 1, 4, 9, 4, 5, 7, 9, 7, 8, 4, 5, 4, 8, 1, 8, 9, 4, 6, 2, 9, 6, 6, 8, 9, 7, 3, 4, 0, 3, 9, 7, 8, 2, 5, 0, 4, 2, 5, 8, 8, 4, 6, 2, 7, 1, 3, 8, 1, 6, 7, 2, 5, 3, 3, 9, 1, 1, 8, 4, 4, 7, 0, 6, 2, 8, 8, 4, 6, 5, 8, 2, 4, 1
Offset: 1

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			1.242062094812414945797845481894629668973403978250425...
		

Programs

  • Mathematica
    RealDigits[Sum[1/n/(2^n - 1), {n, 1, 500}], 10, 100][[1]]
    RealDigits[-Log[QPochhammer[1/2]], 10, 120][[1]] (* Vaclav Kotesovec, Feb 18 2021 *)
  • PARI
    suminf(x = 1, sigma(x)/(x*2^x)) \\ David A. Corneth, Jun 21 2020

Formula

Equals Sum_{k>=1} (A017665(k)/A017666(k))/2^k.
Equals Sum_{k>=1} 1/(k*(2^k - 1)) = Sum_{k>=1} 1/A066524(k).
Equals -Sum_{k>=1} log(1-2^(-k)).
Equals -log(A048651). - Amiram Eldar, Feb 19 2022
Previous Showing 51-60 of 108 results. Next