A357346
E.g.f. satisfies A(x) = (exp(x * exp(A(x))) - 1) * exp(A(x)).
Original entry on oeis.org
0, 1, 5, 52, 849, 18996, 540986, 18726247, 763480675, 35837071558, 1903538106065, 112880374866172, 7392418912962210, 529898419942327801, 41266682731537698181, 3469461853041348996044, 313200848521114144611273, 30215925892728362737156556
Offset: 0
-
a(n) = sum(k=1, n, (n+k)^(k-1)*stirling(n, k, 2));
A355179
Expansion of e.g.f. -LambertW(x^2 * (1 - exp(x)))/2.
Original entry on oeis.org
0, 0, 0, 3, 6, 10, 375, 2541, 11788, 317556, 4238685, 37921015, 909616026, 18283276518, 261259582675, 6360432558585, 164704011195480, 3332419310132776, 88606184592031353, 2713050497589230763, 71412977041725823750, 2144089948615678382970
Offset: 0
-
With[{nn=30},CoefficientList[Series[(-LambertW[x^2 (1-Exp[x])])/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 07 2025 *)
-
my(N=20, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(-lambertw(x^2*(1-exp(x)))/2)))
-
a(n) = n!*sum(k=1, n\3, k^(k-1)*stirling(n-2*k, k, 2)/(n-2*k)!)/2;
A355180
Expansion of e.g.f. -LambertW(x^3 * (1 - exp(x)))/6.
Original entry on oeis.org
0, 0, 0, 0, 4, 10, 20, 35, 6776, 60564, 352920, 1663365, 126625180, 2361079006, 27334747804, 245495250455, 11174333090480, 328952158255400, 6245314009946736, 90576650639967369, 3209305759254634740, 122557203047084965810, 3365068665450300234580
Offset: 0
-
my(N=20, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(-lambertw(x^3*(1-exp(x)))/6)))
-
a(n) = n!*sum(k=1, n\4, k^(k-1)*stirling(n-3*k, k, 2)/(n-3*k)!)/6;
A356000
Expansion of e.g.f. -LambertW((1 - exp(2*x))/2).
Original entry on oeis.org
0, 1, 4, 25, 236, 3061, 50670, 1020881, 24245576, 663290281, 20541118266, 710366714773, 27135242829436, 1134708855427629, 51556563327940390, 2529164265815033241, 133229047747850647312, 7500633471737652798673, 449445732625670948076530
Offset: 0
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[(1 - Exp[2*x])/2], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw((1-exp(2*x))/2))))
-
a(n) = sum(k=1, n, 2^(n-k)*k^(k-1)*stirling(n, k, 2));
A356001
Expansion of e.g.f. -LambertW((1 - exp(3*x))/3).
Original entry on oeis.org
0, 1, 5, 36, 379, 5461, 100476, 2250613, 59432141, 1807959042, 62262816157, 2394551966401, 101724440338494, 4730814590128615, 239057921691911861, 13042779411190737420, 764136645388807739239, 47846833035272035228849, 3188740106752561252031364
Offset: 0
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[(1 - Exp[3*x])/3], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw((1-exp(3*x))/3))))
-
a(n) = sum(k=1, n, 3^(n-k)*k^(k-1)*stirling(n, k, 2));
A216858
Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} summed over all subsets.
Original entry on oeis.org
0, 1, 5, 38, 422, 6184, 112632, 2453296, 62202800, 1799623296, 58507176320, 2111633645824, 83777729991936, 3624054557443072, 169759643117603840, 8560585769442662400, 462387289560368764928, 26633435981686107701248, 1629609677806398679646208, 105555926477075661655441408, 7215930505311133152120995840
Offset: 0
-
nn=20; a=-ProductLog[-x Exp[x] ]; Range[0,nn]! CoefficientList[Series[Log[1/(1-a)], {x,0,nn}], x]
-
x='x+O('x^30); concat([0], Vec(serlaplace(log(1/(1+ lambertw(-x*exp(x))))))) \\ G. C. Greubel, Nov 16 2017
A355181
Expansion of e.g.f. -LambertW(x^2/2 * (1 - exp(x))).
Original entry on oeis.org
0, 0, 0, 3, 6, 10, 195, 1281, 5908, 90756, 1098765, 9605035, 147947646, 2496239538, 33836915203, 588360763095, 12104789358600, 223722576473896, 4578806487368313, 108875473376842467, 2519418390663035170, 60831875074927797750, 1640260621340460494991
Offset: 0
-
my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(-lambertw(x^2/2*(1-exp(x))))))
-
a(n) = n!*sum(k=1, n\3, k^(k-1)*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));
A355308
Expansion of e.g.f. -LambertW(x^3/6 * (1 - exp(x))).
Original entry on oeis.org
0, 0, 0, 0, 4, 10, 20, 35, 1176, 10164, 58920, 277365, 4472380, 69189406, 772011604, 6861855455, 95279504880, 1819310613800, 30768119885136, 430200439251369, 6770486332450740, 139958614722287410, 3033142442978720380, 58782387380290683571, 1138026666874389737544
Offset: 0
-
my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(-lambertw(x^3/6*(1-exp(x))))))
-
a(n) = n!*sum(k=1, n\4, k^(k-1)*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));
A350746
Triangle read by rows: T(n,k) is the number of labeled quasi-loop-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.
Original entry on oeis.org
2, 3, 4, 16, 18, 8, 133, 155, 72, 16, 1521, 1810, 910, 240, 32, 22184, 26797, 14145, 4180, 720, 64, 393681, 480879, 262514, 83230, 16520, 2016, 128, 8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256
Offset: 1
Triangle begins:
2;
3, 4;
16, 18, 8;
133, 155, 72, 16;
1521, 1810, 910, 240, 32;
22184, 26797, 14145, 4180, 720, 64;
393681, 480879, 262514, 83230, 16520, 2016, 128;
8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256;
...
Except at n=1, the first column is
A048802 (
A048802 takes value 1 at n=1).
-
qltconn[0] = 0; qltconn[1] = 2; qltconn[n_] := qltconn[n] = Sum[StirlingS2[n, k]*(k^(k - 1)), {k, 1, n}] (*qltconn is the number of connected quasi loop threshold graphs on n vertices*); T[n_, l_] := T[n, l] := (Factorial[n]/Factorial[l])*Coefficient[(Sum[(qltconn[k]*(x^k))/Factorial[k], {k, 1, n}])^l, x, n]; Table[T[n, l], {n, 1, 12}, {l, 1, n}]
Comments