cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A357346 E.g.f. satisfies A(x) = (exp(x * exp(A(x))) - 1) * exp(A(x)).

Original entry on oeis.org

0, 1, 5, 52, 849, 18996, 540986, 18726247, 763480675, 35837071558, 1903538106065, 112880374866172, 7392418912962210, 529898419942327801, 41266682731537698181, 3469461853041348996044, 313200848521114144611273, 30215925892728362737156556
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (n+k)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} (n+k)^(k-1) * Stirling2(n,k).
E.g.f.: Series_Reversion( exp(-x) * log(1 + x * exp(-x)) ). - Seiichi Manyama, Sep 09 2024

A355179 Expansion of e.g.f. -LambertW(x^2 * (1 - exp(x)))/2.

Original entry on oeis.org

0, 0, 0, 3, 6, 10, 375, 2541, 11788, 317556, 4238685, 37921015, 909616026, 18283276518, 261259582675, 6360432558585, 164704011195480, 3332419310132776, 88606184592031353, 2713050497589230763, 71412977041725823750, 2144089948615678382970
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[(-LambertW[x^2 (1-Exp[x])])/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 07 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(-lambertw(x^2*(1-exp(x)))/2)))
    
  • PARI
    a(n) = n!*sum(k=1, n\3, k^(k-1)*stirling(n-2*k, k, 2)/(n-2*k)!)/2;

Formula

a(n) = (n!/2) * Sum_{k=1..floor(n/3)} k^(k-1) * Stirling2(n-2*k,k)/(n-2*k)!.

A355180 Expansion of e.g.f. -LambertW(x^3 * (1 - exp(x)))/6.

Original entry on oeis.org

0, 0, 0, 0, 4, 10, 20, 35, 6776, 60564, 352920, 1663365, 126625180, 2361079006, 27334747804, 245495250455, 11174333090480, 328952158255400, 6245314009946736, 90576650639967369, 3209305759254634740, 122557203047084965810, 3365068665450300234580
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(-lambertw(x^3*(1-exp(x)))/6)))
    
  • PARI
    a(n) = n!*sum(k=1, n\4, k^(k-1)*stirling(n-3*k, k, 2)/(n-3*k)!)/6;

Formula

a(n) = (n!/6) * Sum_{k=1..floor(n/4)} k^(k-1) * Stirling2(n-3*k,k)/(n-3*k)!.

A356000 Expansion of e.g.f. -LambertW((1 - exp(2*x))/2).

Original entry on oeis.org

0, 1, 4, 25, 236, 3061, 50670, 1020881, 24245576, 663290281, 20541118266, 710366714773, 27135242829436, 1134708855427629, 51556563327940390, 2529164265815033241, 133229047747850647312, 7500633471737652798673, 449445732625670948076530
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[(1 - Exp[2*x])/2], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw((1-exp(2*x))/2))))
    
  • PARI
    a(n) = sum(k=1, n, 2^(n-k)*k^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} 2^(n-k) * k^(k-1) * Stirling2(n,k).
a(n) ~ 2^(n - 1/2) * sqrt(exp(1) + 2) * n^(n-1) / (exp(n) * (log(exp(1) + 2) - 1)^(n - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( (log(1 + 2 * x * exp(-x)))/2 ). - Seiichi Manyama, Sep 11 2024

A356001 Expansion of e.g.f. -LambertW((1 - exp(3*x))/3).

Original entry on oeis.org

0, 1, 5, 36, 379, 5461, 100476, 2250613, 59432141, 1807959042, 62262816157, 2394551966401, 101724440338494, 4730814590128615, 239057921691911861, 13042779411190737420, 764136645388807739239, 47846833035272035228849, 3188740106752561252031364
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{m = 20}, Range[0, m]! * CoefficientList[Series[-ProductLog[(1 - Exp[3*x])/3], {x, 0, m}], x]] (* Amiram Eldar, Sep 24 2022 *)
  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw((1-exp(3*x))/3))))
    
  • PARI
    a(n) = sum(k=1, n, 3^(n-k)*k^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=1..n} 3^(n-k) * k^(k-1) * Stirling2(n,k).
a(n) ~ 3^(n - 1/2) * sqrt(exp(1) + 3) * n^(n-1) / (exp(n) * (log(exp(1) + 3) - 1)^(n - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( (log(1 + 3 * x * exp(-x)))/3 ). - Seiichi Manyama, Sep 11 2024

A216858 Number of connected functions from {1,2,...,n} into a subset of {1,2,...,n} summed over all subsets.

Original entry on oeis.org

0, 1, 5, 38, 422, 6184, 112632, 2453296, 62202800, 1799623296, 58507176320, 2111633645824, 83777729991936, 3624054557443072, 169759643117603840, 8560585769442662400, 462387289560368764928, 26633435981686107701248, 1629609677806398679646208, 105555926477075661655441408, 7215930505311133152120995840
Offset: 0

Views

Author

Geoffrey Critzer, Sep 17 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn=20; a=-ProductLog[-x Exp[x] ]; Range[0,nn]! CoefficientList[Series[Log[1/(1-a)], {x,0,nn}], x]
  • PARI
    x='x+O('x^30); concat([0], Vec(serlaplace(log(1/(1+ lambertw(-x*exp(x))))))) \\ G. C. Greubel, Nov 16 2017

Formula

E.g.f.: log(1/(1-T(x*exp(x)))) where T(x) is the e.g.f. for A000169.
a(n) ~ n!/(2*n*LambertW(exp(-1))^n) * (1 - sqrt(2*(1 + LambertW(exp(-1))) /(Pi*n))/3). - Vaclav Kotesovec, Sep 24 2013

A355181 Expansion of e.g.f. -LambertW(x^2/2 * (1 - exp(x))).

Original entry on oeis.org

0, 0, 0, 3, 6, 10, 195, 1281, 5908, 90756, 1098765, 9605035, 147947646, 2496239538, 33836915203, 588360763095, 12104789358600, 223722576473896, 4578806487368313, 108875473376842467, 2519418390663035170, 60831875074927797750, 1640260621340460494991
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(-lambertw(x^2/2*(1-exp(x))))))
    
  • PARI
    a(n) = n!*sum(k=1, n\3, k^(k-1)*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=1..floor(n/3)} k^(k-1) * Stirling2(n-2*k,k)/(2^k * (n-2*k)!).

A355308 Expansion of e.g.f. -LambertW(x^3/6 * (1 - exp(x))).

Original entry on oeis.org

0, 0, 0, 0, 4, 10, 20, 35, 1176, 10164, 58920, 277365, 4472380, 69189406, 772011604, 6861855455, 95279504880, 1819310613800, 30768119885136, 430200439251369, 6770486332450740, 139958614722287410, 3033142442978720380, 58782387380290683571, 1138026666874389737544
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(-lambertw(x^3/6*(1-exp(x))))))
    
  • PARI
    a(n) = n!*sum(k=1, n\4, k^(k-1)*stirling(n-3*k, k, 2)/(6^k*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=1..floor(n/4)} k^(k-1) * Stirling2(n-3*k,k)/(6^k * (n-3*k)!).

A350746 Triangle read by rows: T(n,k) is the number of labeled quasi-loop-threshold graphs on vertex set [n] with k components, for n >= 1 and 1 <= k <= n.

Original entry on oeis.org

2, 3, 4, 16, 18, 8, 133, 155, 72, 16, 1521, 1810, 910, 240, 32, 22184, 26797, 14145, 4180, 720, 64, 393681, 480879, 262514, 83230, 16520, 2016, 128, 8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256
Offset: 1

Views

Author

David Galvin, Jan 13 2022

Keywords

Comments

The family of quasi-loop-threshold graphs is the smallest family of looped graphs that contains K_1 (a single vertex) and K^loop_1 (a single looped vertex), and is closed under taking unions and adding looped dominating vertices (looped, and adjacent to everything previously added).

Examples

			Triangle begins:
        2;
        3,        4;
       16,       18,       8;
      133,      155,      72,      16;
     1521,     1810,     910,     240,     32;
    22184,    26797,   14145,    4180,    720,    64;
   393681,   480879,  262514,   83230,  16520,  2016,  128;
  8233803, 10144283, 5675866, 1888873, 409360, 58912, 5376, 256;
  ...
		

Crossrefs

Row sums are A038052.
Except at n=1, the first column is A048802 (A048802 takes value 1 at n=1).

Programs

  • Mathematica
    qltconn[0] = 0; qltconn[1] = 2; qltconn[n_] := qltconn[n] = Sum[StirlingS2[n, k]*(k^(k - 1)), {k, 1, n}] (*qltconn is the number of connected quasi loop threshold graphs on n vertices*); T[n_, l_] := T[n, l] := (Factorial[n]/Factorial[l])*Coefficient[(Sum[(qltconn[k]*(x^k))/Factorial[k], {k, 1, n}])^l, x, n]; Table[T[n, l], {n, 1, 12}, {l, 1, n}]

Formula

See Section 1.4 of Galvin, Wesley and Zacovic link for two methods to compute T(n,k).
Previous Showing 11-19 of 19 results.