cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A049059 Third element t of (-1)sigma sociable triple (r,s,t): s=(-1)sigma(r), t=(-1)sigma(s), r=(-1)sigma(t), where if x=Product p(i)^r(i), then (-1)sigma(x)=Product(-1+(Sum p(i)^s(i), s(i)=1 to r(i))).

Original entry on oeis.org

52, 156, 780, 1248, 13260, 19968, 468480
Offset: 0

Views

Author

Keywords

Comments

Definition unclear, see comments in A049057. - Sean A. Irvine, Jul 17 2021

Examples

			Factorizations 2^2*13, 2^2*3*13, 2^2*3*5*13, 2^5*3*13, 2^2*3*5*13*17, 2^9*3*13, 2^9*3*5*61
		

Crossrefs

A034094 (-1)sigma perfect numbers: (-1)sigma(a) = m*a for some integer m, where if a = Product p(i)^r(i) then (-1)sigma(a) = Product_{i} (-1 + Sum_{s=1..r(i)} p(i)^s).

Original entry on oeis.org

1, 20, 312, 9744, 29280, 53352, 1666224, 5006880, 106798080, 133301760, 980733600, 9099742080, 18262471680, 22794600960, 1556055895680, 3577201689600, 4464942451200, 380428773854896765462278360268800000
Offset: 1

Views

Author

Keywords

Comments

The indices of some terms are 1, so these numbers are fixed points of (-1)sigma where (-1)sigma is A049060.

Examples

			Factorizations 2^2*5, 2^3*3*13, 2^4*3*7*29, 2^5*3*5*61, 2^3*3^3*13*19, 2^4*3^3*7*19*29, 2^5*3^3*5*19*61, 2^10*3*5*17*409, 2^9*3*5*17*1021, 2^5*3^2*5^2*7*11*29*61, 2^7*3*5*11^2*13*23*131, 2^10*3^3*5*17*19*409, 2^9*3^3*5*17*19*1021, 2^7*3^3*5*11^2*13*19*23*131, 2^10*3^2*5^2*7*11*17*29*409, 2^9*3^2*5^2*7*11*17*29*1021, 2^24*3^3*5^5*7^2*11*17*19*29*61*233*239*467*479*70051.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-2*p+1)/(p-1); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], Divisible[s[#], #] &] (* Amiram Eldar, Jul 07 2022 *)
  • PARI
    msig(n) = {f = factor(n); for (i=1, #f~, f[i, 1] = (f[i,1]^(f[i,2]+1)-2*f[i,1]+1)/(f[i,1]-1); f[i, 2] = 1;); factorback(f);}
    isok(n) = denominator(msig(n)/n) == 1; \\ Michel Marcus, Jun 02 2016

Extensions

a(1)=1 prepended by Michel Marcus, Jun 02 2016
a(10) and a(11) switched and missing term a(13) inserted by Amiram Eldar, Jul 07 2022

A123732 Decimal expansion of Sum_{m>=1} (-1)Sigma(m)/m^3.

Original entry on oeis.org

1, 4, 6, 4, 0, 0, 3, 5, 4, 3, 6, 0, 3, 1, 8, 2, 0, 2, 5, 9, 3, 8, 4, 2, 4, 8, 9, 4, 3, 4, 5, 4, 2, 7, 0, 8, 9, 8, 3, 9, 6, 1, 9, 9, 5, 7, 9, 4, 9, 4, 5, 6, 7, 6, 8, 3, 0, 5, 3, 5, 6, 4, 5, 9, 0, 5, 4, 7, 2, 8, 9, 5, 4, 8, 5, 0, 5, 8, 5, 3, 9, 9, 7, 8, 8, 4, 9, 2, 3, 6, 7, 4, 5, 1, 2, 6, 2, 6, 6, 0, 6, 2, 3, 3, 3
Offset: 1

Views

Author

Yasutoshi Kohmoto, Nov 18 2006

Keywords

Comments

The sum over (-1)Sigma(m)/m^2 is divergent.

Examples

			1.46400354360318202593842489434542708983961995794945...
		

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + (p^3-p^2+1)/((p-1)^2*(p+1)*(p^2+p+1))) \\ Amiram Eldar, Aug 26 2022

Formula

Equals Sum_{m>=1} A049060(m)/m^3.
Equals Product_{p prime} (1 + (p^3-p^2+1)/((p-1)^2*(p+1)*(p^2+p+1))). - Amiram Eldar, Aug 26 2022

Extensions

40 more digits from R. J. Mathar, Dec 19 2010
More terms from Amiram Eldar, Aug 26 2022

A123733 Decimal expansion of Sum_{m>=1} (-1)Sigma(m)/m^4.

Original entry on oeis.org

1, 1, 2, 6, 3, 4, 2, 8, 6, 4, 3, 1, 4, 5, 5, 0, 7, 0, 5, 7, 2, 4, 9, 7, 8, 4, 8, 7, 2, 9, 9, 9, 2, 6, 8, 3, 2, 5, 8, 4, 6, 4, 2, 0, 6, 3, 5, 0, 2, 6, 2, 9, 7, 4, 9, 2, 5, 1, 6, 8, 8, 2, 8, 0, 8, 7, 9, 8, 2, 9, 1, 5, 2, 6, 5, 9, 4, 9, 3, 0, 1, 8, 3, 6, 8, 9, 2, 7, 3, 2, 2, 5, 7, 3, 2, 4, 8, 4, 8, 0, 4, 8, 8, 9, 5
Offset: 1

Views

Author

Yasutoshi Kohmoto, Nov 18 2006

Keywords

Examples

			1.12634286431455070572497848729992683258464206350262...
		

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + (p^4-p^3+1)/((p-1)^2*(p^2+p+1)*(p^3+p^2+p+1))) \\ Amiram Eldar, Aug 26 2022

Formula

Equals Sum_{m>=1} A049060(m)/m^4.
Equals Product_{p prime} (1 + (p^4- p^3+1)/((p-1)^2*(p^2+p+1)*(p^3+p^2+p+1))). - Amiram Eldar, Aug 26 2022

Extensions

46 more digits from R. J. Mathar, Dec 19 2010
More terms from Amiram Eldar, Aug 26 2022

A123734 Decimal expansion of Sum_{m>=1} (-1)Sigma(m)/m^5.

Original entry on oeis.org

1, 0, 4, 7, 1, 2, 7, 6, 4, 6, 9, 6, 3, 2, 8, 0, 1, 1, 7, 1, 3, 1, 6, 1, 9, 9, 1, 5, 9, 7, 8, 7, 9, 8, 3, 8, 4, 2, 2, 1, 3, 4, 9, 5, 2, 6, 3, 4, 2, 4, 3, 1, 6, 9, 8, 3, 4, 0, 6, 8, 2, 5, 2, 8, 4, 4, 3, 5, 8, 7, 0, 5, 4, 6, 3, 6, 7, 0, 5, 0, 1, 0, 0, 7, 2, 9, 0, 0, 1, 7, 9, 1, 0, 8, 9, 9, 7, 9, 9, 6, 1, 8, 5, 3, 5
Offset: 1

Views

Author

Yasutoshi Kohmoto, Nov 18 2006

Keywords

Examples

			1.04712764696328011713161991597879838422134952634243...
		

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + (p^5-p^4+1)/((p-1)^2*(p^3+p^2+p+1)*(p^4+p^3+p^2+p+1))) \\ Amiram Eldar, Aug 26 2022

Formula

Equals Sum_{m>=1} A049060(m)/m^5.
Equals Product_{p prime} (1 + (p^5-p^4+1)/((p-1)^2*(p^3+p^2+p+1)*(p^4+p^3+p^2+p+1))). - Amiram Eldar, Aug 26 2022

Extensions

More terms from Amiram Eldar, Aug 26 2022

A126690 Multiplicative function defined for prime powers by a(p^k) = p + p^2 + p^3 + ... + p^(k-1) - 1 (k >= 1).

Original entry on oeis.org

1, -1, -1, 1, -1, 1, -1, 5, 2, 1, -1, -1, -1, 1, 1, 13, -1, -2, -1, -1, 1, 1, -1, -5, 4, 1, 11, -1, -1, -1, -1, 29, 1, 1, 1, 2, -1, 1, 1, -5, -1, -1, -1, -1, -2, 1, -1, -13, 6, -4, 1, -1, -1, -11, 1, -5, 1, 1, -1, 1, -1, 1, -2, 61, 1, -1, -1, -1, 1, -1, -1, 10, -1, 1, -4, -1, 1, -1, -1, -13, 38, 1, -1, 1, 1, 1, 1, -5, -1, 2, 1, -1, 1, 1, 1, -29, -1, -6, -2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Feb 14 2008, based on a posting to the Sequence Fans Mailing List by Yasutoshi Kohmoto, Feb 02 2005

Keywords

Comments

If we change the definition to a(p^k) = p + p^2 + p^3 + ... + p^k - 1 (k >= 1) we get (-1)sigma(n), A049060.

Examples

			a(5) = -1, a(9) = 3-1 = 2, a(45) = (-1)*2 = -2.
		

Crossrefs

Cf. A049060.

Programs

  • Maple
    pksum := proc(L) local p,k ; p := op(1,L) ; k := op(2,L) ; (p^k-p)/(p-1)-1 ; end: A126690 := proc(n) local pe,a ; if n = 1 then RETURN(1) ; else a := 1 ; pe := ifactors(n)[2] ; for d in pe do a := a*pksum(d) ; od: RETURN(a) ; fi; end: for n from 1 to 120 do printf("%d,",A126690(n)) ; od: # R. J. Mathar, Aug 08 2008
  • Mathematica
    a[1] = 1;
    a[n_] := a[n] = Product[{p, k} = pk; Total[p^Range[k - 1]] - 1, {pk, FactorInteger[n]}];
    Array[a, 100] (* Jean-François Alcover, Mar 31 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^f[i,2] - 2*f[i,1] + 1)/(f[i,1]-1));} \\ Amiram Eldar, May 26 2025

Formula

Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) - 2/p^s + 3/p^(2*s-1)). - Amiram Eldar, May 26 2025

Extensions

Extended beyond a(30) by R. J. Mathar, Aug 08 2008
More terms from Antti Karttunen, Sep 23 2017

A327669 Sum of divisors of n that have an odd number of distinct prime factors.

Original entry on oeis.org

0, 2, 3, 6, 5, 5, 7, 14, 12, 7, 11, 9, 13, 9, 8, 30, 17, 14, 19, 11, 10, 13, 23, 17, 30, 15, 39, 13, 29, 40, 31, 62, 14, 19, 12, 18, 37, 21, 16, 19, 41, 54, 43, 17, 17, 25, 47, 33, 56, 32, 20, 19, 53, 41, 16, 21, 22, 31, 59, 104, 61, 33, 19, 126, 18, 82, 67, 23, 26, 84
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 21 2019

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(nops(factorset(d))::odd, d, 0), d=divisors(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 21 2019
  • Mathematica
    a[n_] := DivisorSum[n, # &, OddQ[PrimeNu[#]] &]; Table[a[n], {n, 1, 70}]

Formula

G.f.: Sum_{k>=1} A030230(k) * x^A030230(k) / (1 - x^A030230(k)).
L.g.f.: log(B(x)) = Sum_{n>=1} a(n) * x^n / n, where B(x) = g.f. of A285799.
a(n) = Sum_{d|n} d * A092248(d).
a(n) = A000203(n) - A327670(n).
a(p) = p, where p is prime.

A327670 Sum of divisors of n that have an even number of distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 19, 1, 15, 16, 1, 1, 25, 1, 31, 22, 23, 1, 43, 1, 27, 1, 43, 1, 32, 1, 1, 34, 35, 36, 73, 1, 39, 40, 71, 1, 42, 1, 67, 61, 47, 1, 91, 1, 61, 52, 79, 1, 79, 56, 99, 58, 59, 1, 64, 1, 63, 85, 1, 66, 62, 1, 103, 70, 60, 1, 169, 1, 75, 91
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 21 2019

Keywords

Crossrefs

Cf. A000961 (positions of 1's), A000203, A030231, A049060, A285798, A318676, A327669.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(nops(factorset(d))::even, d, 0), d=divisors(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 21 2019
  • Mathematica
    a[n_] := DivisorSum[n, # &, EvenQ[PrimeNu[#]] &]; Table[a[n], {n, 1, 75}]

Formula

G.f.: Sum_{k>=1} A030231(k) * x^A030231(k) / (1 - x^A030231(k)).
L.g.f.: log(B(x)) = Sum_{n>=1} a(n) * x^n / n, where B(x) = g.f. of A285798.
a(n) = A000203(n) - A327669(n).

A034095 Indices of (-1)sigma perfect numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-2*p+1)/(p-1); r[1] = 1; r[n_] := (Times @@ f @@@ FactorInteger[n])/n; Select[r /@ Range[10^5], IntegerQ] (* Amiram Eldar, Jul 07 2022 *)

Formula

a(n) = (-1)sigma(A034094(n))/A034094(n) where (-1)sigma(n) = A049060(n).

Extensions

a(1)=1 prepended and offset corrected by Michel Marcus, Jun 02 2016
a(10) and a(11) switched and missing term a(13) inserted by Amiram Eldar, Jul 07 2022

A051152 (-1)sigma sociable number of order 2: (-1)sigma((-1)sigma(x))=x, but (-1)sigma(x)<>x, where if x=Product p(i)^r(i) then (-1)sigma(x)=Product (-1+Sum p(i)^s(i), s(i)=1 to r(i)); (-1)sigma(1)=1.

Original entry on oeis.org

4, 5, 216, 494, 16800, 21228, 246400, 440220
Offset: 0

Views

Author

Keywords

Comments

Factorizations: 4, 5, 2^3*3^3, 2*13*19, 2^5*3*5^2*7, 2^2*3*29*61

Crossrefs

Programs

  • PARI
    A049060(n)={ local(i,resul,rmax,p) ; if(n==1, return(1) ) ; i=factor(n) ; rmax=matsize(i)[1] ; resul=1 ; for(r=1,rmax, p=0 ; for(j=1,i[r,2], p += i[r,1]^j ; ) ; resul *= p-1 ; ) ; return(resul) ; }
    isA051152(r)={ local(s,t) ; s=A049060(r) ; t=A049060(s) ; if( r == t && s !=r, return(1), return(0) ) ; }
    { for(n=1,30000000, if( isA051152(n), print(n," ") ) ; ) ; } \\ R. J. Mathar, Oct 12 2006

Extensions

More terms from R. J. Mathar, Oct 12 2006
Previous Showing 11-20 of 28 results. Next