cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A373411 Sum of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 2, 8, 6, 17, 24, 14, 72, 22, 78, 30, 64, 34, 72, 38, 80, 42, 89, 263, 58, 120, 127, 66, 136, 70, 144, 151, 78, 161, 168, 86, 360, 94, 293, 102, 208, 106, 216, 110, 224, 114, 233, 241, 379, 130, 264, 271, 138, 280, 142, 288, 600, 312, 158, 648, 166, 510, 351
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this antirun is given by A373127.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			Row-sums of:
   1
   2
   3  5
   6
   7 10
  11 13
  14
  15 17 19 21
  22
  23 26 29
  30
  31 33
  34
  35 37
  38
  39 41
  42
  43 46
  47 51 53 55 57
		

Crossrefs

The partial sums are a subset of A173143.
Functional neighbors: A007674, A373127 (firsts A373128, sorted firsts A373200), A373404, A373405, A373408, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most

A372541 Least k such that the k-th squarefree number has exactly n ones in its binary expansion.

Original entry on oeis.org

1, 3, 6, 11, 20, 60, 78, 157, 314, 624, 1245, 3736, 4982, 9962, 19920, 39844, 79688, 239046, 318725, 956194, 1912371, 2549834, 5099650, 15298984, 20398664, 40797327, 81594626, 163189197, 326378284, 979135127, 1305513583, 2611027094, 5222054081, 10444108051
Offset: 0

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
       1:                   1 ~ {1}
       3:                  11 ~ {1,2}
       7:                 111 ~ {1,2,3}
      15:                1111 ~ {1,2,3,4}
      31:               11111 ~ {1,2,3,4,5}
      95:             1011111 ~ {1,2,3,4,5,7}
     127:             1111111 ~ {1,2,3,4,5,6,7}
     255:            11111111 ~ {1,2,3,4,5,6,7,8}
     511:           111111111 ~ {1,2,3,4,5,6,7,8,9}
    1023:          1111111111 ~ {1,2,3,4,5,6,7,8,9,10}
    2047:         11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11}
    6143:       1011111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,13}
    8191:       1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13}
   16383:      11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
   32767:     111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
   65535:    1111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
  131071:   11111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}
		

Crossrefs

Positions of firsts appearances in A372433.
Counting zeros instead of ones gives A372473, firsts in A372472.
For prime instead of squarefree we have A372517, firsts of A014499.
Counting bits (length) gives A372540, firsts of A372475, runs A077643.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A145037, A097110 count ones minus zeros, for primes A372516, A177796.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    nn=10000;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    dcs=DigitCount[Select[Range[nn],SquareFreeQ],2,1];
    Table[Position[dcs,i][[1,1]],{i,spnm[dcs-1]}]
  • Python
    from math import isqrt
    from itertools import count
    from sympy import factorint, mobius
    from sympy.utilities.iterables import multiset_permutations
    def A372541(n):
        if n==0: return 1
        for l in count(n):
            m = 1<Chai Wah Wu, May 10 2024

Extensions

a(23)-a(33) from Chai Wah Wu, May 10 2024

A373123 Sum of all squarefree numbers from 2^(n-1) to 2^n - 1.

Original entry on oeis.org

1, 5, 18, 63, 218, 891, 3676, 15137, 60580, 238672, 953501, 3826167, 15308186, 61204878, 244709252, 979285522, 3917052950, 15664274802, 62663847447, 250662444349, 1002632090376, 4010544455838, 16042042419476, 64168305037147, 256675237863576
Offset: 1

Views

Author

Gus Wiseman, May 27 2024

Keywords

Examples

			This is the sequence of row sums of A005117 treated as a triangle with row-lengths A077643:
   1
   2   3
   5   6   7
  10  11  13  14  15
  17  19  21  22  23  26  29  30  31
  33  34  35  37  38  39  41  42  43  46  47  51  53  55  57  58  59  61  62
		

Crossrefs

Counting all numbers (not just squarefree) gives A010036.
For the sectioning of A005117:
Row-lengths are A077643, partial sums A143658.
First column is A372683, delta A373125, indices A372540, firsts of A372475.
Last column is A372889, delta A373126, indices A143658, diffs A077643.
For primes instead of powers of two:
- sum A373197
- length A373198 = A061398 - 1
- maxima A112925, opposite A112926
For prime instead of squarefree:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234, delta A013603
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers, first differences A076259.
A030190 gives binary expansion, reversed A030308.
A070939 or (preferably) A029837 gives length of binary expansion.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Total[Select[Range[2^(n-1),2^n-1],SquareFreeQ]],{n,10}]
  • PARI
    a(n) = my(s=0); forsquarefree(i=2^(n-1), 2^n-1, s+=i[1]); s; \\ Michel Marcus, May 29 2024

A373413 Sum of the n-th maximal run of squarefree numbers.

Original entry on oeis.org

6, 18, 21, 42, 17, 19, 66, 26, 90, 102, 114, 126, 93, 51, 53, 55, 174, 123, 198, 210, 147, 234, 165, 258, 89, 91, 282, 97, 306, 318, 330, 342, 237, 245, 127, 390, 267, 414, 426, 291, 149, 151, 309, 474, 161, 163, 498, 170, 347, 534, 546, 558, 381, 582, 197
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The length of this run is given by A120992.
A run of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by one.

Examples

			Row-sums of:
   1   2   3
   5   6   7
  10  11
  13  14  15
  17
  19
  21  22  23
  26
  29  30  31
  33  34  35
  37  38  39
  41  42  43
  46  47
  51
  53
  55
  57  58  59
		

Crossrefs

The partial sums are a subset of A173143.
Functional neighbors: A054265, A072284, A120992, A373406, A373411, A373414, A373415.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],SquareFreeQ],#1+1==#2&]//Most

A086251 Number of primitive prime factors of 2^n - 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 2, 3
Offset: 1

Views

Author

T. D. Noe, Jul 14 2003

Keywords

Comments

A prime factor of 2^n - 1 is called primitive if it does not divide 2^r - 1 for any r < n. Equivalently, p is a primitive prime factor of 2^n - 1 if ord(2,p) = n. Zsigmondy's theorem says that there is at least one primitive prime factor for n > 1, except for n=6. See A086252 for those n that have a record number of primitive prime factors.
Number of odd primes p such that A002326((p-1)/2) = n. Number of occurrences of number n in A014664. - Thomas Ordowski, Sep 12 2017
The prime factors are not counted with multiplicity, which matters for a(364)=4 and a(1755)=6. - Jeppe Stig Nielsen, Sep 01 2020

Examples

			a(11) = 2 because 2^11 - 1 = 23*89 and both 23 and 89 have order 11.
		

Crossrefs

Cf. A046800, A046051 (number of prime factors, with repetition, of 2^n-1), A086252, A002588, A005420, A002184, A046801, A049093, A049094, A059499, A085021, A097406, A112927, A237043.

Programs

  • Mathematica
    Join[{0}, Table[cnt=0; f=Transpose[FactorInteger[2^n-1]][[1]]; Do[If[MultiplicativeOrder[2, f[[i]]]==n, cnt++ ], {i, Length[f]}]; cnt, {n, 2, 200}]]
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*omega(2^d-1)); \\ Michel Marcus, Sep 12 2017
    
  • PARI
    a(n) = my(m=polcyclo(n, 2)); omega(m/gcd(m,n)) \\ Jeppe Stig Nielsen, Sep 01 2020

Formula

a(n) = Sum{d|n} mu(n/d) A046800(d), inverse Mobius transform of A046800.
a(n) <= A182590(n). - Thomas Ordowski, Sep 14 2017
a(n) = A001221(A064078(n)). - Thomas Ordowski, Oct 26 2017

Extensions

Terms to a(500) in b-file from T. D. Noe, Nov 11 2010
Terms a(501)-a(1200) in b-file from Charles R Greathouse IV, Sep 14 2017
Terms a(1201)-a(1206) in b-file from Max Alekseyev, Sep 11 2022

A372889 Greatest squarefree number <= 2^n.

Original entry on oeis.org

1, 2, 3, 7, 15, 31, 62, 127, 255, 511, 1023, 2047, 4094, 8191, 16383, 32767, 65535, 131071, 262142, 524287, 1048574, 2097149, 4194303, 8388607, 16777214, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741822, 2147483647, 4294967295, 8589934591
Offset: 0

Views

Author

Gus Wiseman, May 27 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
      1:               1 ~ {1}
      2:              10 ~ {2}
      3:              11 ~ {1,2}
      7:             111 ~ {1,2,3}
     15:            1111 ~ {1,2,3,4}
     31:           11111 ~ {1,2,3,4,5}
     62:          111110 ~ {2,3,4,5,6}
    127:         1111111 ~ {1,2,3,4,5,6,7}
    255:        11111111 ~ {1,2,3,4,5,6,7,8}
    511:       111111111 ~ {1,2,3,4,5,6,7,8,9}
   1023:      1111111111 ~ {1,2,3,4,5,6,7,8,9,10}
   2047:     11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11}
   4094:    111111111110 ~ {2,3,4,5,6,7,8,9,10,11,12}
   8191:   1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13}
  16383:  11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
  32767: 111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
		

Crossrefs

Positions of these terms in A005117 are A143658.
For prime instead of squarefree we have A014234, delta A013603.
For primes instead of powers of two we have A112925, opposite A112926.
Least squarefree number >= 2^n is A372683, delta A373125, indices A372540.
The opposite for prime instead of squarefree is A372684, firsts of A035100.
The delta (difference from 2^n) is A373126.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers, first differences A076259.
A030190 gives binary expansion, reversed A030308, length A070939 or A029837.
A061398 counts squarefree numbers between primes, exclusive.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.

Programs

  • Mathematica
    Table[NestWhile[#-1&,2^n,!SquareFreeQ[#]&],{n,0,15}]
  • PARI
    a(n) = my(k=2^n); while (!issquarefree(k), k--); k; \\ Michel Marcus, May 29 2024

Formula

a(n) = A005117(A143658(n)).
a(n) = A070321(2^n). - R. J. Mathar, May 31 2024

A373408 Minimum of the n-th maximal antirun of squarefree numbers differing by more than one.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 14, 15, 22, 23, 30, 31, 34, 35, 38, 39, 42, 43, 47, 58, 59, 62, 66, 67, 70, 71, 74, 78, 79, 83, 86, 87, 94, 95, 102, 103, 106, 107, 110, 111, 114, 115, 119, 123, 130, 131, 134, 138, 139, 142, 143, 146, 155, 158, 159, 166, 167, 174, 178, 179
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The maximum is given by A007674.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.
Consists of 1 and all squarefree numbers n such that n - 1 is also squarefree.

Examples

			Row-minima of:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
  38
  39  41
  42
  43  46
  47  51  53  55  57
		

Crossrefs

Functional neighbors: A005381, A006512, A007674, A072284, A373127, A373410, A373411.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    First/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most

Formula

a(1) = 1; a(n>1) = A007674(n-1) + 1.

A373402 Numbers k such that the k-th maximal antirun of prime numbers > 3 has length different from all prior maximal antiruns. Sorted list of positions of first appearances in A027833.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 21, 24, 30, 35, 40, 41, 46, 50, 69, 82, 131, 140, 185, 192, 199, 210, 248, 251, 271, 277, 325, 406, 423, 458, 645, 748, 811, 815, 826, 831, 987, 1053, 1109, 1426, 1456, 1590, 1629, 1870, 1967, 2060, 2371, 2607, 2920, 2946, 3564, 3681, 4119
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A373401.
For this sequence, we define an antirun to be an interval of positions at which consecutive primes differ by at least 3.

Examples

			The maximal antiruns of prime numbers > 3 begin:
    5
    7  11
   13  17
   19  23  29
   31  37  41
   43  47  53  59
   61  67  71
   73  79  83  89  97 101
  103 107
  109 113 127 131 137
  139 149
  151 157 163 167 173 179
The a(n)-th rows begin:
    5
    7  11
   19  23  29
   43  47  53  59
   73  79  83  89  97 101
  109 113 127 131 137
		

Crossrefs

For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For squarefree antiruns: A373200, unsorted A373128, firsts of A373127.
For composite runs we have A373400, unsorted A073051.
The unsorted version is A373401, firsts of A027833.
For composite antiruns we have the triple (1,2,7), firsts of A373403.
A000040 lists the primes, differences A001223.
A002808 lists the composite numbers, differences A073783.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[4,10000],PrimeQ],#1+2!=#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373415 Maximum of the n-th maximal run of squarefree numbers.

Original entry on oeis.org

3, 7, 11, 15, 17, 19, 23, 26, 31, 35, 39, 43, 47, 51, 53, 55, 59, 62, 67, 71, 74, 79, 83, 87, 89, 91, 95, 97, 103, 107, 111, 115, 119, 123, 127, 131, 134, 139, 143, 146, 149, 151, 155, 159, 161, 163, 167, 170, 174, 179, 183, 187, 191, 195, 197, 199, 203, 206
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The minimum is given by A072284.
A run of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by one.
Consists of all squarefree numbers k such that k + 1 is not squarefree.

Examples

			Row-maxima of:
   1   2   3
   5   6   7
  10  11
  13  14  15
  17
  19
  21  22  23
  26
  29  30  31
  33  34  35
  37  38  39
  41  42  43
  46  47
  51
  53
  55
  57  58  59
		

Crossrefs

Functional neighbors: A006093, A007674, A067774, A072284, A120992, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Last/@Split[Select[Range[100],SquareFreeQ],#1+1==#2&]//Most

Formula

a(n) = A070321(A072284(n+1) - 1).

A373200 Numbers k such that the k-th maximal antirun of squarefree numbers has length different from all prior maximal antiruns. Sorted positions of first appearances in A373127.

Original entry on oeis.org

1, 3, 8, 10, 19, 162, 1633, 1853, 2052, 26661, 46782, 1080330, 3138650
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2024

Keywords

Comments

The unsorted version is A373128.
An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of squarefree numbers begin:
   1
   2
   3   5
   6
   7  10
  11  13
  14
  15  17  19  21
  22
  23  26  29
  30
  31  33
  34
  35  37
The a(n)-th rows are:
    1
    3    5
   15   17   19   21
   23   26   29
   47   51   53   55   57
  483  485  487  489  491  493
		

Crossrefs

For squarefree runs we have the triple (1,3,5), firsts of A120992.
For prime runs we have the triple (1,2,3), firsts of A175632.
The unsorted version is A373128, firsts of A373127.
For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797.
For composite runs we have A373400, unsorted A073051.
For prime antiruns we have A373402, unsorted A373401, firsts of A027833.
For composite antiruns we have the triple (1,2,7), firsts of A373403.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],SquareFreeQ],#1+1!=#2&]//Most;
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]
Previous Showing 21-30 of 36 results. Next