cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 490 results. Next

A193663 Q-residue of A049310 (triangle of coefficients of Fibonacci polynomials), where Q is the triangle given by t(n,k)=k+1 for 0<=k<=n. (See Comments.)

Original entry on oeis.org

0, 1, 1, 9, 17, 80, 198, 748, 2107, 7236, 21680, 71279, 219879, 708436, 2215513, 7071210, 22256567, 70723367, 223272153, 708017329, 2238347440, 7091170416, 22433032016
Offset: 0

Views

Author

Clark Kimberling, Aug 02 2011

Keywords

Comments

The definition of Q-residue is given at A193649.

Crossrefs

Programs

  • Mathematica
    q[n_, k_] := k + 1;
    r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}];
    f[n_, x_] := Fibonacci[n, x]; (* A049310 *)
    p[n_, k_] := Coefficient[f[n, x], x, k];
    v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]
    Table[v[n], {n, 0, 22}]    (* A193663 *)
    TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]
    Table[r[k], {k, 0, 8}]
    TableForm[Table[p[n, k], {n, 0, 6}, {k, 0, n}]]

Formula

Conjecture: G.f.: x*(1-x+x^2) / ( 1-2*x-6*x^2+7*x^3+x^4 ). - R. J. Mathar, Feb 19 2015

A220665 Array of coefficients of powers of x^2 for (S(2*n+1,x)/x)^3, with Chebyshev's S polynomials A049310.

Original entry on oeis.org

1, -8, 12, -6, 1, 27, -108, 171, -136, 57, -12, 1, -64, 480, -1488, 2488, -2472, 1524, -588, 138, -18, 1, 125, -1500, 7575, -21200, 36690, -41700, 32211, -17184, 6330, -1580, 255, -24, 1, -216, 3780, -28098, 117323, -308688, 546864, -680474, 611019, -402264, 195444, -69894, 18153, -3328, 408, -30, 1
Offset: 0

Views

Author

Wolfdieter Lang, Dec 17 2012

Keywords

Comments

The row lengths sequence of this array is 3*n+1 = A016777(n).
For the coefficient array of S(n,x)^3 see A219240. The present array is the odd part of the bisection of that one divided by x^3.
The row polynomials in powers of x^2 are (S(2*n+1,x)/x)^3 = sum(a(n,m)*x^(2*m), m=0..3*n), n >= 0. The o.g.f. for these row polynomials is GS3odd(x,z) = ((z+1)^2 +2*z*(x^2-3))/ (((z+1)^2-z*x^2)*((z+1)^2-z*x^2*(x^2-3)^2)). This is obtained from the odd part of the bisection of the o.g.f. for A219240.

Examples

			The array a(n,m) begins:
n\m  0    1     2     3      4     5     6    7    8  9
0:   1
1:  -8   12    -6     1
2:  27 -108   171  -136     57   -12     1
3: -64  480 -1488  2488  -2472  1524  -588  138  -18  1
...
Row n=4: [125 -1500, 7575, -21200, 36690, -41700, 32211, -17184, 6330, -1580, 255, -24, 1],
Row n=5: [-216, 3780, -28098, 117323, -308688, 546864, -680474, 611019, -402264, 195444, -69894, 18153, -3328, 408, -30, 1],
Row n=6: [343, -8232, 84378, -489608, 1809129, -4562292, 8219967, -10918992, 10927077, -8356272, 4923132, -2240256, 784840, -209580, 41853, -6048, 597, -36, 1],
Row n=1: (S(3,x)/x)^3 = -8 + 12*x^2 - 6*x^4 + 1*x^6, with Chebyshev's S polynomial.
		

Crossrefs

Cf. A219240, A220666 (even part of the bisection).

Formula

a(n,m) = [x^m](S(2*n+1,x)/x)^3, n>=0, 0 <= m <= 3*n.
a(n,m) = [x^m]([z^n]GS3odd(x,z)) with GS3odd(x,z) the o.g.f. for the row polynomials in powers of x^2, given in a comment above.

A286717 a(n) is the number of zeros of the Chebyshev S(n, x) polynomial (A049310) in the open interval (-phi, +phi), with the golden section phi = (1 + sqrt(5))/2.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 4, 5, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 14, 15, 16, 17, 18, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 23, 24, 25, 26, 27, 26, 27, 28, 29, 30, 29, 30, 31, 32, 33, 32, 33, 34, 35, 36, 35, 36, 37, 38, 39, 38, 39, 40, 41, 42
Offset: 0

Views

Author

Wolfdieter Lang, May 13 2017

Keywords

Comments

See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by Michel Lagneau (see A008611) on Fibonacci polynomials.

Examples

			a(4) = 2: S(4, x) = 1+x^4-3*x^2, and only two of the four zeros -phi, -1/phi, +1/phi, phi are in the open interval (-phi, +phi), the other two are at the borders.
		

Crossrefs

Cf. A008611(n-1) (1), A285869 (sqrt(2)), A285872 (sqrt(3)).

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)))); // G. C. Greubel, Mar 08 2018
  • Mathematica
    CoefficientList[Series[x*(1+x+x^2-x^3+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)), {x, 0, 50}], x] (* G. C. Greubel, Mar 08 2018 *)
    LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,3,2,3},80] (* Harvey P. Dale, Aug 20 2020 *)
  • PARI
    concat(0, Vec(x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^100))) \\ Colin Barker, May 18 2017
    

Formula

a(n) = 2*b(n) if n is even and 1 + 2*b(n) if n is odd with b(n) = floor(n/2) - floor((n+1)/6) = A286716(n). See the g.f. for {b(n)}_{n>=0} there.
From Colin Barker, May 18 2017: (Start)
G.f.: x*(1 + x + x^2 - x^3 + x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-5) - a(n-6) for n>5.
(End)

A302707 Number of factors of Chebyshev polynomial S(2*n+1, x) (A049310) over the integers. Factorization is into the minimal integer polynomials C (A187360).

Original entry on oeis.org

1, 2, 4, 3, 4, 6, 4, 4, 7, 6, 4, 8, 4, 6, 10, 5, 4, 10, 4, 8, 10, 6, 4, 10, 7, 6, 10, 8, 4, 14, 4, 6, 10, 6, 10, 13, 4, 6, 10, 10, 4, 14, 4, 8, 16, 6, 4, 12, 7, 10, 10, 8, 4, 14, 10, 10, 10, 6, 4, 18, 4, 6, 16, 7, 10, 14, 4, 8, 10, 14, 4, 16, 4, 6, 16, 8, 10, 14, 4, 12, 13
Offset: 0

Views

Author

Wolfdieter Lang, Apr 12 2018

Keywords

Comments

For the factorization of the Chebyshev S polynomials (coefficients in A049310) with odd index into the minimal polynomials of {2*cos(Pi/k)}_{k>=1} (coefficients in A187360) see an Apr 12 2018 comment in A049310.
Note that factors -C(k, -x) may appear also and they come always together with C(k, x) (the minus signs are not counted as factors here). C(2, x) = x is always a factor.
For the number of factors of S(2*n, x) see 2*(tau(2*n+1) - 1) = 2*A095374(n).

Examples

			a(2) = 4 because S(5, x) = 3*x-4*x^3+x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x).
a(5) = 6 because S(11, x) = -6*x + 35*x^3 - 56*x^5 + 36*x^7 - 10*x^9 + x^11 = x*(-1 + x)*(1 + x)*(-2 + x^2)*(-3 + x^2)*(1 - 4*x^2 + x^4) = C(2, x)*C(3, x)*(-C(3, -x))*C(4, x)*C(6, x)*C(12, x).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 2*(n+1)] + DivisorSigma[0, (n+1)/2^IntegerExponent[n+1, 2]] - 2; Array[a, 100, 0] (* Amiram Eldar, Feb 03 2025 *)
  • PARI
    A001227(n) = numdiv(n>>valuation(n,2));
    A302707(n) = (A001227(1+n) + numdiv(2*(n+1)) - 2); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = tau_{odd}(n+1) + tau(2*(n+1)) - 2, n >= 0, with tau_{odd} = A001227 and tau = A000005.
G.f.: Sum_{k>=1} (x^(k-1)/(1-x^(2*k)) + x^(k-1)*(2+x^k)/(1-x^(2*k))) - 2/(1-x).
Sum_{k=1..n} a(k) ~ 2*n * (log(n) + 2*gamma + log(2)/2 - 2), where gamma is Euler's constant (A001620). - Amiram Eldar, Feb 03 2025

Extensions

Typo in the first formula corrected by Antti Karttunen, Sep 30 2018

A309213 A007318 + A065941 - A049310.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 2, 6, 5, 1, 1, 5, 12, 6, 1, 2, 3, 14, 17, 8, 1, 3, 7, 14, 24, 26, 9, 1, 2, 12, 27, 30, 45, 33, 11, 1, 1, 9, 45, 62, 70, 66, 45, 12, 1, 2, 5, 44, 111, 147, 120, 104, 54, 14, 1, 3, 11, 39, 128, 273, 273, 217, 140, 69, 15, 1, 2, 18, 65, 139, 366, 546, 518, 329, 200, 80, 17, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 04 2007

Keywords

Comments

Row sums = 1, 3, 7, 14, 25, 45, 85, ... (This is probably a new sequence and should be added to the OEIS.) - N. J. A. Sloane, Aug 09 2019

Examples

			First few rows of the triangle are:
1,
2, 1,
3, 3, 1,
2, 6, 5, 1,
1, 5, 12, 6, 1,
2, 3, 14, 17, 8, 1,
3, 7, 14, 24, 26, 9, 1,
...
		

Crossrefs

Programs

  • PARI
    T007318(n, k) = binomial(n, k);
    T065941(n, k) = binomial(n - (k+1)\2, k\2);
    T049310(n, k) = if ((n+k)%2, 0, (-1)^((n+k)/2 + k) * binomial((n+k)/2, k));
    T(n, k) = T007318(n, k) + T065941(n, k) - T049310(n, k); \\ Michel Marcus, Apr 28 2014

Formula

A007318 + A065941 - A168561 as infinite lower triangular matrices.

Extensions

The old definition of A131376 did not match the data, as Michel Marcus pointed out. The definition there has been corrected, keeping the old data. The present sequence uses the old definition with corrected data from Michel Marcus. - N. J. A. Sloane, Aug 09 2019
More terms from Jinyuan Wang, Aug 29 2019

A128932 Define the Fibonacci polynomials by F[1] = 1, F[2] = x; for n > 2, F[n] = x*F[n-1] + F[n-2] (cf. A049310, A053119). Swamy's inequality implies that F[n] <= F[n]^2 <= G[n] = (x^2 + 1)^2*(x^2 + 2)^(n-3) for n >= 3 and x >= 1. The sequence gives a triangle of coefficients of G[n] - F[n] read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, -2, 5, -1, 4, 0, 1, 3, 0, 9, 0, 12, 0, 6, 0, 1, 8, -3, 28, -4, 38, -1, 25, 0, 8, 0, 1, 15, 0, 58, 0, 99, 0, 87, 0, 41, 0, 10, 0, 1, 32, -4, 144, -10, 272, -6, 280, -1, 170, 0, 61, 0, 12, 0, 1, 63, 0, 310, 0, 673, 0, 825, 0, 619, 0, 292, 0, 85, 0, 14, 0, 1
Offset: 3

Views

Author

N. J. A. Sloane, Apr 28 2007

Keywords

Comments

From Petros Hadjicostas, Jun 10 2020: (Start)
Swamy's (1966) inequality states that F[n]^2 <= G[n] for all real x and all integers n >= 3. Because F[n] >= 1 for all real x >= 1, we get F[n] <= G[n] for all integers n >= 3 and all real x >= 1.
Row n >= 3 of this irregular table gives the coefficients of the polynomial G[n] - F[n] (with exponents in increasing order). The degree of G[n] - F[n] is 2*n - 2, so row n >= 3 contains 2*n - 1 terms.
Guilfoyle (1967) notes that F[n] = det(A_n), where A_n is the (n-1) X (n-1) matrix [[x, -1, 0, 0, ..., 0, 0, 0], [1, x, -1, 0, ..., 0, 0, 0], [0, 1, x, -1, ..., 0, 0, 0], ..., [0, 0, 0, 0, ..., 1, x, -1], [0, 0, 0, 0, ..., 0, 1, x]], and Swamy's original inequality follows from Hadamard's inequality.
Koshy (2019) writes Swamy's original inequality in the form x^(n-3)*F[n]^2 <= F[3]^2*F[4]^(n-3) for x >= 1, and gives a counterpart inequality for Lucas polynomials. Notice, however, that the original form of Swamy's inequality is true for all real x. (End)

Examples

			Triangle T(n,k) (with rows n >= 3 and columns k = 0..2*n-2) begins:
   0,  0,  1,  0,  1;
   2, -2,  5, -1,  4,  0,  1;
   3,  0,  9,  0, 12,  0,  6, 0,  1;
   8, -3, 28, -4, 38, -1, 25, 0,  8, 0,  1;
  15,  0, 58,  0, 99,  0, 87, 0, 41, 0, 10, 0, 1;
  ...
		

References

  • Thomas Koshy, Fibonacci and Lucas numbers with Applications, Vol. 2, Wiley, 2019; see p. 33. [Vol. 1 was published in 2001.]
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.

Crossrefs

Programs

  • PARI
    lista(nn) = {my(f=vector(nn)); my(g=vector(nn)); my(h=vector(nn)); f[1]=1; f[2]=x; g[1]=0; g[2]=0; for(n=3, nn, g[n] = (x^2+1)^2*(x^2+2)^(n-3)); for(n=3, nn, f[n] = x*f[n-1]+f[n-2]); for(n=1, nn, h[n] = g[n]-f[n]); for(n=3, nn, for(k=0, 2*n-2, print1(polcoef(h[n], k, x), ",")); print(););} \\ Petros Hadjicostas, Jun 10 2020

Formula

From Petros Hadjicostas, Jun 10 2020: (Start)
T(n,0) = 2^(n-3) - (1 - (-1)^n)/2 = A166920(n-3) for n >= 3.
Sum_{k=0}^{2*n-2} T(n,k) = 4*3^(n-3) - Fib(n) = A003946(n-2) - A000045(n) for n >= 3. (End)

Extensions

Name edited by Petros Hadjicostas, Jun 10 2020

A131350 2*A007318 - A049310 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 1, 1, 4, 1, 2, 4, 6, 1, 1, 8, 9, 8, 1, 2, 7, 20, 16, 10, 1, 1, 12, 24, 40, 25, 12, 1, 2, 10, 42, 60, 70, 36, 14, 1, 1, 16, 46, 112, 125, 112, 49, 16, 1, 2, 13, 72, 148, 252, 231, 168, 64, 18, 1
Offset: 0

Views

Author

Gary W. Adamson, Jul 02 2007

Keywords

Comments

Row sums = A099036 starting (1, 3, 6, 13, 27, 56, 115,...).

Examples

			First few rows of the triangle are:
1;
2, 1;
1, 4, 1;
2, 4, 6, 1;
1, 8, 9, 8, 1;
2, 7, 20, 16, 10, 1;
1, 12, 24, 40, 25, 12, 1;
...
		

Crossrefs

A135830 A000012(signed) * A049310 * A000012.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 1, 3, 0, 1, 4, 1, 4, 0, 1, 4, 7, 1, 5, 0, 1, 9, 5, 11, 1, 6, 0, 1, 12, 16, 6, 16, 1, 7, 0, 1, 22, 17, 27, 7, 22, 1, 8, 0, 1, 33, 38, 23, 43, 8, 29, 1, 9, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 30 2007

Keywords

Comments

Row sums A010049: (1, 1, 3, 5, 10, 18, 33, ...).

Examples

			First few rows of the triangle:
   1;
   0,  1;
   2,  0,  1;
   1,  3,  0,  1;
   4,  1,  4,  0,  1;
   4,  7,  1,  5,  0,  1;
   9,  5, 11,  1,  6,  0,  1;
  12, 16,  6, 16,  1,  7,  0,  1;
  ...
		

Crossrefs

Formula

A000012(signed) * A049310 * A000012, as infinite lower triangular matrices, where A000012(signed) = (1; -1,1; 1,-1,1; ...).

A137865 Triangle read by rows, antidiagonals of an array formed by A000012 * A049310(transform).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 3, 4, 3, 1, 1, 1, 2, 3, 4, 3, 1, 0, 1, 1, 2, 3, 5, 7, 7, 4, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 0, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 1, 1, 2, 3, 5, 12, 14, 11, 5, 1, 0
Offset: 0

Views

Author

Gary W. Adamson, Feb 18 2008

Keywords

Comments

Rows of the array tend to the Fibonacci sequence.
Row sums of the triangle = A052551: (1, 1, 3, 3, 7, 7, 15, 15, 31, 31, 63, 63, ...).

Examples

			First few rows of the array:
  1, 0, 1, 0, 1, 0,  1, ...
  1, 1, 1, 2, 1, 3,  1, ...
  1, 1, 2, 2, 4, 3,  7, ...
  1, 1, 2, 3, 4, 7,  7, ...
  1, 1, 2, 3, 5, 7, 12, ...
  1, 1, 2, 3, 5, 8, 12, ...
  ...
First few rows of the triangle:
  1;
  1, 0;
  1, 1, 1;
  1, 1, 1, 0;
  1, 1, 2, 2, 1;
  1, 1, 2, 2, 1, 0;
  1, 1, 2, 3, 4, 3,  1;
  1, 1, 2, 3, 4, 3,  1,  0;
  1, 1, 2, 3, 5, 7,  7,  4,  1;
  1, 1, 2, 3, 5, 7,  7,  4,  1, 0;
  1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1;
  1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 0;
  ...
		

Crossrefs

Formula

Triangle read by rows, antidiagonals of an array formed by taking A000012 * A049310(transform); given A049310 unsigned.

A220666 Array of coefficients of powers of x^2 for S(2*n,x)^3 with Chebyshev's S polynomials A049310.

Original entry on oeis.org

1, -1, 3, -3, 1, 1, -9, 30, -45, 30, -9, 1, -1, 18, -123, 399, -651, 588, -308, 93, -15, 1, 1, -30, 345, -1921, 5598, -9540, 10212, -7137, 3303, -1003, 192, -21, 1, -1, 45, -780, 6609, -29847, 80718, -141482, 168927, -141636, 84766, -36366, 11091, -2346, 327, -27, 1
Offset: 0

Views

Author

Wolfdieter Lang, Dec 17 2012

Keywords

Comments

The row lengths sequence of this array is 3*n+1 = A016777(n).
For the coefficient array of S(n,x)^3 see A219240. The present array is the even part of the bisection of that one.
The row polynomials in powers of x^2 are (S(2*n,x))^3 =
sum(a(n,m)*x^(2*m), m=0..3*n), n >= 0. The o.g.f. for these row polynomials is GS3even(x,z) = ((z+1)^3 + (1+z)*z*x^2*(3*x^2 - 7))/(((z+1)^2-z*x^2)*((z+1)^2-z*x^2*(x^2-3)^2)). This is obtained from the even part of the bisection of the o.g.f. for A219240.

Examples

			The array a(n,m) begins:
n\m  0    1     2     3      4     5     6    7    8  9
0:   1
1:  -1    3    -3     1
2:   1   -9    30   -45     30    -9     1
3:   1   18  -123   399   -651   588  -308   93  -15  1
...
Row n=4: [1, -30, 345, -1921, 5598, -9540, 10212, -7137, 3303, -1003, 192, -21, 1],
Row n=5: [-1, 45, -780, 6609, -29847, 80718, -141482, 168927, -141636, 84766, -36366, 11091, -2346, 327, -27, 1],
Row n=6: [1, -63, 1533, -18333, 118029, -460815, 1184872, -2118207, 2729922, -2598297, 1854177, -999687, 407472, -124680, 28164, -4553, 498, -33, 1].
Row n=2: S(4,x)^3 = 1 - 9*x^2 + 30*x^4 - 45*x^6 + 30*x^8  - 9*x^10 + 1*x^12.
		

Crossrefs

Cf. A219240, A220665 (odd part of the bisection).

Formula

a(n,m) = [x^m] S(2*n,x)^3, n>=0, 0 <= m <= 3*n.
a(n,m) = [x^m]([z^n]GS3even(x,z)) with GS3even(x,z) the o.g.f. for the row polynomials in powers of x^2, given in a comment above.
Previous Showing 21-30 of 490 results. Next