cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A231210 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of some of the consecutive patterns 123, 1432, 2431, 3421; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 9, 1, 46, 59, 14, 1, 177, 358, 164, 20, 1, 790, 2235, 1589, 398, 27, 1, 4024, 14658, 15034, 5659, 909, 35, 1, 23056, 103270, 139465, 77148, 17875, 2021, 44, 1, 146777, 778451, 1334945, 970679, 341071, 52380, 4442, 54, 1, 1027850, 6315499
Offset: 0

Views

Author

Alois P. Heinz, Nov 05 2013

Keywords

Examples

			T(3,1) = 1: 123.
T(4,0) = 14: 1324, 1423, 2143, 2314, 2413, 3142, 3214, 3241, 3412, 4132, 4213, 4231, 4312, 4321.
T(4,1) = 9: 1243, 1342, 1432, 2134, 2341, 2431, 3124, 3421, 4123.
T(4,2) = 1: 1234.
T(5,2) = 14: 12354, 12453, 12543, 13452, 13542, 14532, 21345, 23451, 23541, 24531, 31245, 34521, 41235, 51234.
T(5,3) = 1: 12345.
Triangle T(n,k) begins:
:  0 :      1;
:  1 :      1;
:  2 :      2;
:  3 :      5,      1;
:  4 :     14,      9,       1;
:  5 :     46,     59,      14,      1;
:  6 :    177,    358,     164,     20,      1;
:  7 :    790,   2235,    1589,    398,     27,     1;
:  8 :   4024,  14658,   15034,   5659,    909,    35,    1;
:  9 :  23056, 103270,  139465,  77148,  17875,  2021,   44,  1;
: 10 : 146777, 778451, 1334945, 970679, 341071, 52380, 4442, 54, 1;
		

Crossrefs

Columns k=0-2 give: A231211, A231228, A228422.
Row sums give: A000142.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u+j-1, o-j, [2, 2, 2][t])*`if`(t=2, x, 1), j=1..o)+
          add(b(u-j, o+j-1, [1, 3, 1][t])*`if`(t=3, x, 1), j=1..u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..14);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[ Sum[b[u+j-1, o-j, {2, 2, 2}[[t]]]*If[t == 2, x, 1], {j, 1, o}] + Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]]*If[t == 3, x, 1], {j, 1, u}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)

A065429 Number of permutations of {1..n} which contain 3 consecutive terms in increasing order.

Original entry on oeis.org

0, 0, 1, 7, 50, 371, 3023, 26962, 263503, 2806759, 32439638, 404794391, 5429249279, 77941628854, 1193095348531, 19406686847167, 334372746780002, 6085085617645595, 116659595136911903, 2350442395504338154, 49658877772798776295, 1097945956312067172727
Offset: 1

Views

Author

Joe Keane (jgk(AT)jgk.org), Nov 16 2001

Keywords

Examples

			a(3)=1 since 1,2,3 is only solution.
		

Crossrefs

Equals n! - A049774(n).

A206806 Sum_{0A002620(j) is the j-th quarter-square.

Original entry on oeis.org

1, 4, 13, 30, 62, 112, 190, 300, 455, 660, 931, 1274, 1708, 2240, 2892, 3672, 4605, 5700, 6985, 8470, 10186, 12144, 14378, 16900, 19747, 22932, 26495, 30450, 34840, 39680, 45016, 50864, 57273, 64260, 71877, 80142, 89110, 98800, 109270, 120540, 132671, 145684
Offset: 2

Views

Author

Clark Kimberling, Feb 15 2012

Keywords

Comments

Partial sums of A049774. For a guide to related sequences, see A206817.

Crossrefs

Programs

  • Magma
    [(108-36*n-n^2+n^4+(70*n-266)*Ceiling((3-n)/2)-(42*n-234)*Ceiling((3-n)/2)^2+(8*n-88)*Ceiling((3-n)/2)^3+12*Ceiling((3-n)/2)^4-4*n*Floor(n/2)-(12*n-12)*Floor(n/2)^2-(8*n-24)*Floor(n/2)^3+12*Floor(n/2)^4)/12: n in [2..50]]; // Wesley Ivan Hurt, Jul 10 2014
    
  • Maple
    A206806:=n->add(i*(n-i)*(i-ceil((i-1)/2)), i=1..n): seq(A206806(n), n=2..50); # Wesley Ivan Hurt, Jul 10 2014
  • Mathematica
    s[k_] := Floor[k/2]*Ceiling[k/2]; t[1] = 0;
    Table[s[k], {k, 1, 20}]    (* A002620 *)
    p[n_] := Sum[s[k], {k, 1, n}];
    c[n_] := n*s[n] - p[n];
    t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]
    Table[c[n], {n, 2, 50}]    (* A049774 *)
    f = Flatten[Table[t[n], {n, 2, 50}]]  (* A206806 *)
    Table[Sum[i (n - i) (i - Ceiling[(i - 1)/2]), {i, n}], {n, 2, 50}] (* Wesley Ivan Hurt, Jul 10 2014 *)
    CoefficientList[Series[-(2 x^2 + x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 10 2014 *)
  • PARI
    vector(100, n, ((n+1)*(1+3*(-1)^(n+1)-2*(n+1)+2*(n+1)^2+2*(n+1)^3))/48) \\ Colin Barker, Jul 10 2014
    
  • PARI
    Vec(-x^2*(2*x^2+x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Jul 10 2014
    
  • Sage
    [sum([sum([floor(k^2/4)-floor(j^2/4) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,44)] # Danny Rorabaugh, Apr 18 2015

Formula

From Wesley Ivan Hurt, Jul 10 2014: (Start)
a(n) = Sum_{i=1..n} i * (n-i) * (i-ceiling((i-1)/2)).
a(n) = (108 - 36n - n^2 + n^4 + (70n - 266) * ceiling((3 - n)/2) - (42n - 234) * ceiling((3 - n)/2)^2 + (8n - 88) * ceiling((3 - n)/2)^3 + 12 * ceiling((3 - n)/2)^4 - 4n * floor(n/2) - (12n - 12) * floor(n/2)^2 - (8n - 24) * floor(n/2)^3 + 12 * floor(n/2)^4) / 12. (End)
a(n) = (n*(1+3*(-1)^n-2*n+2*n^2+2*n^3))/48. - Colin Barker, Jul 10 2014
G.f.: -x^2*(2*x^2+x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Jul 10 2014

A183611 E.g.f. satisfies: A'(x) = A(x)^2 + x*A(x)^3, with A(0) = 1.

Original entry on oeis.org

1, 1, 3, 14, 91, 756, 7657, 91504, 1260441, 19663280, 342669691, 6597811584, 139094618467, 3186675803584, 78834061767825, 2094418664339456, 59474007876381553, 1797637447068293376, 57623116235327599411
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 14*x^3/3! + 91*x^4/4! +...
A'(x) = 1 + 3*x + 14*x^2/2! + 91*x^3/3! + 756*x^4/4! +...
A(x)^2 = 1 + 2*x + 8*x^2/2! + 46*x^3/3! + 348*x^4/4! + 3262*x^5/5! +...
A(x)^3 = 1 + 3*x + 15*x^2/2! + 102*x^3/3! + 879*x^4/4! + 4395*x^5/5! +...
E.g.f. A(x) = d/dx Series_Reversion(G(x)) where G(x) begins:
G(x) = x - x^2/2! + x^4/4! - x^5/5! + x^7/7! - x^8/8! + x^10/10! - x^11/11! +...
The series reversion of G(x) begins:
x + x^2/2! + 3*x^3/3! + 14*x^4/4! + 91*x^5/5! + 756*x^6/6! +...
		

Crossrefs

Programs

  • Mathematica
    terms = 20; A[_] = 0;
    Do[A[x_] = 1+Integrate[A[x]^2 + x A[x]^3, x]+O[x]^terms // Normal, terms];
    CoefficientList[A[x], x] Range[0, terms-1]! (* Jean-François Alcover, Oct 27 2018 *)
  • PARI
    {a(n)=local(A=1);for(n=0,n,A=1+A*intformal(1+x*A+x*O(x^n)));n!*polcoeff(A,n)}
    
  • PARI
    {a(n)=n!*polcoeff(deriv(serreverse(sum(m=1,n\3+1,x^(3*m-2)/(3*m-2)!-x^(3*m-1)/(3*m-1)!+x^2*O(x^n)))),n)}

Formula

E.g.f.: A(x) = 1 + A(x)*[Integral 1 + x*A(x) dx], where the integration does not include the constant term.
E.g.f.: d/dx Series_Reversion(Sum_{n>=1} x^(3*n-2)/(3*n-2)! - x^(3*n-1)/(3*n-1)!).
a(n) ~ n^n * exp(Pi*(n+1)/(3*sqrt(3))-n). - Vaclav Kotesovec, Feb 19 2014

A231211 Number of permutations of [n] avoiding simultaneously consecutive patterns 123, 1432, 2431, and 3421.

Original entry on oeis.org

1, 1, 2, 5, 14, 46, 177, 790, 4024, 23056, 146777, 1027850, 7852184, 64985116, 579191277, 5530869310, 56336971744, 609708912976, 6986749484177, 84510154473170, 1076016705993704, 14385283719409636, 201475033030143477, 2950048762311387430, 45073424916825354064
Offset: 0

Views

Author

Alois P. Heinz, Nov 05 2013

Keywords

Comments

Number of permutations of [n] avoiding simultaneously consecutive step patterns up, up and up, down, down.

Examples

			a(3) = 5: 132, 213, 231, 312, 321.
a(4) = 14: 1324, 1423, 2143, 2314, 2413, 3142, 3214, 3241, 3412, 4132, 4213, 4231, 4312, 4321.
a(5) = 46: 13254, 14253, 14352, ..., 54231, 54312, 54321.
a(6) = 177: 132546, 132645, 142536, ..., 654231, 654312, 654321.
		

Crossrefs

Column k=0 of A231210.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(t=4, 0, `if`(u+o=0, 1,
          add(b(u+j-1, o-j, [2, 4, 2][t]), j=1..o)+
          add(b(u-j, o+j-1, [1, 3, 4][t]), j=1..u)))
        end:
    a:= n-> b(n, 0, 1):
    seq(a(n), n=0..30);
    # second Maple program
    n:=40: c[0,0]:=1: for i to n-1 do c[i,0]:=0 end do: for i to n-1 do for j to i do c[i,j] := c[i,j-1] + c[i-1,i-j] + 1 end do end do: 1, seq(c[k, k]/2, k=1..n-1); # Sergei N. Gladkovskii, Jul 27 2015
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[t == 4, 0, If[u + o == 0, 1,
        Sum[b[u + j - 1, o - j, {2, 4, 2}[[t]]], {j, 1, o}] +
        Sum[b[u - j, o + j - 1, {1, 3, 4}[[t]]], {j, 1, u}]]];
    a[n_] := b[n, 0, 1];
    a /@ Range[0, 30] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)

Formula

a(n) ~ (1+exp(Pi/2)) * (2/Pi)^(n+1) * n!. - Vaclav Kotesovec, Aug 28 2014

A232864 Number of permutations of n elements not cyclically containing the consecutive pattern 123.

Original entry on oeis.org

1, 1, 2, 3, 12, 45, 234, 1323, 8856, 65529, 543510, 4937031, 49030596, 526930677, 6101871426, 75686176035, 1001517264432, 14079895613937, 209594037600558, 3293305758743679, 54470994630103260, 945988795762018029, 17211193919411902938, 327371367293394753627
Offset: 0

Views

Author

Richard Ehrenborg, Dec 01 2013

Keywords

Examples

			a(4) = 12 comes from the 3 permutations 1324, 1423 and 1432, and by cyclically shifting we obtain 3 * 4 = 12 permutations.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
          add(b(u-j, o+j-1, 1), j=1..u))
        end:
    a:= n-> `if`(n=0, 1, n*b(0, n-1, 1)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 01 2013
  • Mathematica
    b[u_,o_,t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 1], {j, 1, u}]];
    a[n_]:= If[n==0, 1, n*b[0, n-1, 1]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 14 2017, after Alois P. Heinz *)

Formula

a(n) = n! * Sum_{k=-oo..oo} (sqrt(3)/(2*Pi*(k+1/3)))^n for n >= 2.
a(n) = A080635(n-1)*n for n>0. - Alois P. Heinz, Dec 01 2013

A254523 Number of permutations of [n] avoiding adjacent step pattern {up}^11.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001599, 6227020775, 87178290682, 1307674357710, 20922789683040, 355687423926240, 6402373618334400, 121645098513933120, 2432901965590252800, 51090941178938707200, 1124000703770606323200
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 31 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
          `if`(t<10, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
          add(b(u-j, o+j-1, 0), j=1..u))
        end:
    a:= n-> b(n, 0, 0):
    seq(a(n), n=0..30); # after Alois P. Heinz
  • Mathematica
    CoefficientList[Series[6 / (Exp[-x] + Cos[x] + 2*Cos[x/2] * Cosh[Sqrt[3]*x/2] - Cosh[Sqrt[3]*x/2]*Sin[x/2] - Sin[x] + Cosh[x/2] * (2*Cos[Sqrt[3]*x/2] - Sqrt[3]*Sin[Sqrt[3]*x/2]) - Cos[Sqrt[3]*x/2]*Sinh[x/2] - Sqrt[3]*Cos[x/2]*Sinh[Sqrt[3]*x/2]), {x, 0, 25}], x] * Range[0, 25]!

Formula

E.g.f.: 1 / Sum_{n>=0} (12*n+1-x)*x^(12*n)/(12*n+1)!.
E.g.f.: 6 / (exp(-x) + cos(x) + 2*cos(x/2)*cosh(sqrt(3)*x/2) - cosh(sqrt(3)*x/2)*sin(x/2) - sin(x) + cosh(x/2)*(2*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) - cos(sqrt(3)*x/2)*sinh(x/2) - sqrt(3)*cos(x/2)*sinh(sqrt(3)*x/2)).
a(n)/n! ~ c * (1/r)^n, where r = 1.0000000019270853046730165249753673978954992128247736041276... is the root of the equation Sum_{n>=0} (r^(12*n)/(12*n)! - r^(12*n+1)/(12*n+1)!) = 0, equivalently root of the equation exp(-r) + cos(r) + 2*cos(r/2)*cosh(sqrt(3)*r/2) - cosh(sqrt(3)*r/2)*sin(r/2) - sin(r) + cosh(r/2)*(2*cos(sqrt(3)*r/2) - sqrt(3)*sin(sqrt(3)*r/2)) - cos(sqrt(3)*r/2)*sinh(r/2) - sqrt(3)*cos(r/2)*sinh(sqrt(3)*r/2) = 0, c = 3/(r*sqrt((cosh(sqrt(3)*r/2) * sin(r/2) + sin(r))^2 + 2*sqrt(3)*cosh(r/2) * (cosh(sqrt(3)*r/2) * sin(r/2) + sin(r)) * sin(sqrt(3)*r/2) + 3*cosh(r/2)^2 * sin((sqrt(3)*r)/2)^2)) = 1.0000000210373483515818712802156496756788404534079689145773611990529818919... .

A328504 Number of inversion sequences of length n avoiding the consecutive pattern 010.

Original entry on oeis.org

1, 1, 2, 5, 17, 76, 417, 2701, 20199, 171329, 1624851, 17036586, 195685618, 2443572835, 32959210808, 477542545691, 7396931591165, 121976733648960, 2133460758692093, 39450254899737811, 768950119933799815, 15757352298761474101, 338663233082663363407
Offset: 0

Views

Author

Vaclav Kotesovec and Juan S. Auli, Oct 17 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, j, t) option remember; `if`(n=0, 1, add(
          `if`(i>=j or i<>t, b(n-1, i, j), 0), i=1..n))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Oct 18 2019
  • Mathematica
    b[n_, j_, t_] := b[n, j, t] = If[n == 0, 1, Sum[If[i >= j || i != t, b[n - 1, i, j], 0], {i, 1, n}]];
    a[n_] := b[n, 0, 0];
    a /@ Range[0, 25] (* Jean-François Alcover, Mar 12 2020, after Alois P. Heinz *)

Formula

a(n) ~ n! * c / sqrt(n), where c = 1.410641128930866501817126119... - Vaclav Kotesovec, Oct 19 2019

A182822 Exponential Riordan array, defining orthogonal polynomials related to permutations without double falls.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 12, 6, 1, 17, 53, 39, 10, 1, 70, 279, 260, 95, 15, 1, 349, 1668, 1914, 880, 195, 21, 1, 2017, 11341, 15330, 8554, 2380, 357, 28, 1, 13358, 86019, 134317, 87626, 29379, 5530, 602, 36, 1, 99377, 722664, 1277604, 954885, 372771, 84231, 11508, 954, 45, 1, 822041, 6655121, 13149441, 11061480, 4924515, 1292445, 211533, 22020, 1440, 55, 1
Offset: 0

Views

Author

Paul Barry, Dec 05 2010

Keywords

Comments

Inverse is the coefficient array for the orthogonal polynomials P(0,x) = 1, P(1,x) = x-1, P(n,x) = (x-n)*P(n-1,x) - (n-1)^2*P(n-2,x). Inverse is A182823. First column is A049774.

Examples

			Triangle begins
      1;
      1,     1;
      2,     3,      1;
      5,    12,      6,     1;
     17,    53,     39,    10,     1;
     70,   279,    260,    95,    15,    1;
    349,  1668,   1914,   880,   195,   21,   1;
   2017, 11341,  15330,  8554,  2380,  357,  28,  1;
  13358, 86019, 134317, 87626, 29379, 5530, 602, 36, 1;
Production matrix is
  1, 1;
  1, 2, 1;
  0, 4, 3,  1;
  0, 0, 9,  4,  1;
  0, 0, 0, 16,  5,  1;
  0, 0, 0,  0, 25,  6,  1;
  0, 0, 0,  0,  0, 36,  7,  1;
  0, 0, 0,  0,  0,  0, 49,  8,  1;
  0, 0, 0,  0,  0,  0,  0, 64,  9,   1;
  0, 0, 0,  0,  0,  0,  0,  0, 81,  10,  1;
  0, 0, 0,  0,  0,  0,  0,  0,  0, 100, 11, 1;
		

Programs

  • Mathematica
    dim = 11; M[n_, n_] = 1; M[n_ /; 0 <= n <= dim-1, k_ /; 0 <= k <= dim-1] := M[n, k] = M[n-1, k-1] + (k+1)*M[n-1, k] + (k+1)^2*M[n-1, k+1]; M[, ] = 0;
    Table[M[n, k], {n, 0, dim-1}, {k, 0, n}] (* Jean-François Alcover, Jun 18 2019 *)
  • Sage
    def A182822_triangle(dim):
        T = matrix(ZZ,dim,dim)
        for n in (0..dim-1): T[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                T[n,k] = T[n-1,k-1]+(k+1)*T[n-1,k]+(k+1)^2*T[n-1,k+1]
        return T
    A182822_triangle(9) # Peter Luschny, Sep 19 2012

Formula

Exponential Riordan array [exp(x/2)/(cos(sqrt(3)x/2)-sin(sqrt(3)x/2)/sqrt(3)), 2*sin(sqrt(3)x/2)/(sqrt(3)*cos(sqrt(3)x/2)-sin(sqrt(3)x/2))].
From Werner Schulte, Mar 27 2022: (Start)
T(n,k) = T(n-1,k-1) + (k+1) * T(n-1,k) + (k+1)^2 * T(n-1,k+1) for n > 0 with initial values T(0,0) = 1 and T(i,j) = 0 if j < 0 or i < j (see the Sage program below).
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k satisfy recurrence equation p(n,x) = (1+x) * (p(n-1,x) + p'(n-1,x)) + x * p"(n-1,x) for n > 0 with initial value p(0,x) = 1 where p' and p" are first and second derivative of p. (End)

A199675 Expansion of e.g.f. 1/(exp(-x) - Sum_{n>=0} (-x)^(3*n+2)/(3*n+2)!).

Original entry on oeis.org

1, 1, 2, 7, 31, 170, 1129, 8737, 77198, 767683, 8482519, 103093958, 1366897597, 19633740673, 303706037546, 5033465370031, 88983532209967, 1671402633292562, 33241154368669921, 697834148797749601, 15420722865332961206, 357805114894717632331, 8697446048869287663271
Offset: 0

Views

Author

Paul D. Hanna, Nov 09 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 31*x^4/4! + 170*x^5/5! +...
where
A(x) = 1/(1 - x - x^3/3! + x^4/4! + x^6/6! - x^7/7! - x^9/9! + x^10/10! +...).
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(1/(exp(-x+x*O(x^n)) - sum(m=0, n\3, (-x)^(3*m+2)/(3*m+2)! )), n)}
    
  • PARI
    {a(n)=n!*polcoeff(1/(sum(m=0, n\3+1, (-x)^(3*m)/(3*m)! + (-x)^(3*m+1)/(3*m+1)! +x^2*O(x^n))), n)}

Formula

E.g.f.: A(x) = 1/Q(0); Q(k) = 1-x/((3*k+1)-(x^2)*(3*k+1)/((x^2)+3*(3*k+2)*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 26 2011
Previous Showing 41-50 of 57 results. Next