cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A254323 Remove in decimal representation of A254143(n) all repeated digits.

Original entry on oeis.org

1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 34, 37, 367, 469, 67, 156, 1258, 136, 1348, 1369, 1468, 278, 238, 2359, 2479, 2569, 268, 34, 37, 367, 367, 489, 469, 67, 1356, 1458, 12358, 12469, 12478, 136, 1348, 13468, 13579, 1468, 2378, 2579
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2015

Keywords

Comments

a(n) <= 123456789 for all n, and a(n) < 123456789 for n < 396;
a(396) = 123456789 = A050289(1);

Crossrefs

Cf. A254338 (initial digits), A254339 (final digits).

Programs

  • Haskell
    a254323 = a137564 . a254143

A257664 a(1)=1; a(n+1) is the smallest positive integer not yet used where the digits of the decimal expansion (disregarding all leading and trailing zeros) of a(n)/a(n+1) have no digit in common with either a(n) or a(n+1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 11, 15, 25, 22, 20, 24, 27, 9, 12, 16, 32, 33, 30, 40, 18, 36, 44, 37, 45, 50, 60, 48, 64, 72, 54, 55, 66, 73, 77, 7, 14, 21, 28, 42, 70, 35, 75, 82, 110, 41, 108, 111, 125, 132, 135, 150, 225, 202, 220, 200, 240, 80, 120, 128, 192, 216, 243, 270
Offset: 1

Views

Author

Eric Angelini and Hans Havermann, Jul 12 2015

Keywords

Comments

Positive powers of ten (A011557) and pandigital numbers (A050289 and A171102) will never appear.
Is the sequence finite?

Examples

			a(2) is 2 because it is the smallest number not yet used where the digits of a(1)/a(2) = .5, i.e., 5, is neither 1 nor 2.
a(3) is 3 because it is the smallest number not yet used where the digits of a(2)/a(3) = .666.., i.e., 6, is neither 2 nor 3.
a(4) is 4 because it is the smallest number not yet used where the digits of a(3)/a(4) = .75, i.e., 5 and 7, are neither 3 nor 4.
a(72) is 63 because it is the smallest number not yet used where the digits of a(71)/a(72) = 90/63 = 1.42857142857.., i.e., 1, 2, 4, 5, 7, and 8, are not any of 0, 3, 6, or 9.
a(376) is 15000 because it is the smallest number not yet used where the digits of a(375)/a(376) = 1025/15000 = .068333.., i.e., 3, 6, and 8 (the zero is leading) are not any of 0, 1, 2, or 5.
		

Programs

  • Mathematica
    t = 1; s = {1}; Do[c = 1; d = IntegerDigits[t]; While[Intersection[Flatten[RealDigits[t/c][[1]]], Join[IntegerDigits[c], d]] != {} || MemberQ[s, c], c++]; t = c; AppendTo[s, t], {400}]; s

A286846 Zeroless pandigital (9-digit) numbers where the first three digits minus the middle three digits equals the last three digits.

Original entry on oeis.org

459173286, 459176283, 459183276, 459186273, 459273186, 459276183, 459283176, 459286173, 468173295, 468175293, 468193275, 468195273, 468273195, 468275193, 468293175, 468295173, 486127359, 486129357, 486157329, 486159327, 486327159, 486329157, 486357129
Offset: 1

Views

Author

Jonathan Schwartz, Aug 01 2017

Keywords

Examples

			459173286: 459 - 173 = 286.
		

Crossrefs

A subsequence of A290725.

Programs

  • Java
    import java.util.*; public class GenerateSequence {public static void main(String[] args) { Set seq = new TreeSet(); for (long i = 123456789l; i < 987654321; i++) {Set set = new HashSet(); String number = Long.toString(i);if (!(number.contains("0"))) {for (int n = 0; n < 9; n++){set.add(number.charAt(n));} if (set.size() == 9) {if (Integer.valueOf(number.substring(0, 3)) - Integer.valueOf(number.substring(3, 6)) == Integer.valueOf(number.substring(6, 9))) { seq.add(i);} } } System.out.println(seq); } }
    
  • Mathematica
    FromDigits/@Select[Permutations[Range[9]],FromDigits[Take[#,3]]-FromDigits[ Take[ #,{4,6}]]==FromDigits[Take[#,-3]]&] (* Harvey P. Dale, Aug 08 2020 *)
  • Python
    from itertools import permutations
    def t2i(t): return int("".join(map(str, t)))
    alst = [t2i(p) for p in permutations(range(1, 10)) if t2i(p[:3]) - t2i(p[3:6]) == t2i(p[6:])]
    print(alst) # Michael S. Branicky, May 30 2022

A305701 Nonnegative integers whose decimal digits span an initial interval of {0,...,9}.

Original entry on oeis.org

0, 10, 100, 101, 102, 110, 120, 201, 210, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1023, 1032, 1100, 1101, 1102, 1110, 1120, 1200, 1201, 1202, 1203, 1210, 1220, 1230, 1302, 1320, 2001, 2010, 2011, 2012, 2013, 2021, 2031, 2100, 2101, 2102, 2103
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2018

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L;
      L:= convert(convert(n,base,10),set);
      L = {$0..max(L)}
    end proc:
    select(filter, [$0..3000]); # Robert Israel, Jun 10 2018
  • Mathematica
    Select[Range[0,10000],Union[IntegerDigits[#]]==Range[0,Max[IntegerDigits[#]]]&]
  • PARI
    isok(n) = if (n==0, return (1)); my(d=Set(digits(n))); (vecmin(d) == 0) && (vecmax(d) == #d - 1); \\ Michel Marcus, Jul 05 2018

A305714 Number of finite sequences of positive integers of length n that are polydivisible and strictly pandigital.

Original entry on oeis.org

1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 08 2018

Keywords

Comments

A sequence q of length k is strictly pandigital if it is a permutation of {1,2,...,k}. It is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.

Examples

			Sequence of sets of n-digit numbers that are weakly polydivisible and strictly pandigital is (with A = 10):
  {0}
  {1}
  {12}
  {123,321}
  {}
  {}
  {123654,321654}
  {}
  {38165472}
  {381654729}
  {381654729A}
		

Crossrefs

A248352 Numbers k such that 10^k - 987654321 is prime.

Original entry on oeis.org

986, 1240, 1928, 4054, 14252, 47528, 101728
Offset: 1

Views

Author

Derek Orr, Oct 05 2014

Keywords

Comments

Note that 987654321 is the largest pandigital number in base-10, omitting 0.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[10^# - 987654321] &] (* Robert Price, Dec 05 2019 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(10^n-987654321),print1(n,", ")))

Extensions

a(6)-a(7) from Robert Price, Dec 05 2019

A277057 Least k such that n-th repunit times k contains all digits from 1 to 9.

Original entry on oeis.org

123456789, 11225079, 1113198, 210789, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115
Offset: 1

Views

Author

Andrey Zabolotskiy and Altug Alkan, Sep 26 2016

Keywords

Comments

Starting from n=5, a(n)=A277059(10)=11115, and the corresponding pandigital numbers are 123499...98765 (n-4 nines). Actually, for all n, the resulting numbers are zeroless pandigitals.
a(1)-a(5) constitute row 10 of A277058.
a(n)*A002275(n) is 123456789, 123475869, 123564978, 234186579, 123498765, ...

Examples

			a(2) = 11225079 because A002275(2)*11225079 = 11*11225079 = 123475869 that contains all digits from 1 to 9 and 11225079 is the least number with this property.
		

Crossrefs

Programs

  • PARI
    isok(n) = my(d=digits(n)); vecmin(d) && (#Set(digits(n)) == 9);
    a(n) = {if (n==1, return(123456789)); my(k=1); while(! isok(k*(10^n - 1)/9), k++); k;} \\ Michel Marcus, Sep 26 2019

A289552 Zeroless pandigital numbers (each digit 1-9 used exactly once) where the first 3 digits plus the next 3 digits equals the last 3 digits.

Original entry on oeis.org

124659783, 125739864, 127359486, 127368495, 128367495, 128439567, 129357486, 129438567, 129654783, 129735864, 134658792, 135729864, 138429567, 138654792, 139428567, 139725864, 142596738, 142695837, 143586729, 145692837, 146583729, 146592738, 152487639, 152784936
Offset: 1

Views

Author

Jonathan Schwartz, Aug 02 2017

Keywords

Examples

			124659783: 124 + 659 = 783.
		

Crossrefs

Programs

  • Java
    import java.util.*;public class Sequence{public static void main(String[] args) {
    for (long i = 123456789l; i < 987654321l; i++)
    {Set set = new HashSet();String number = Long.toString(i);
    if (!(number.contains("0"))) {
    for (int n = 0; n < 9; n++) {set.add(number.charAt(n));}
    if (set.size() == 9){
    if(Integer.valueOf(number.substring(0,3))+Integer.valueOf(number.substring(3,6))==Integer.valueOf(number.substring(6,9)))
    {System.out.print(i + ", ");}}}}}}
    
  • Mathematica
    FromDigits/@Select[Permutations[Range[9]],FromDigits[Take[#,3]]+FromDigits[ Take[ #,{4,6}]] == FromDigits[Take[#,-3]]&] (* Harvey P. Dale, Oct 18 2022 *)
  • Python
    from itertools import permutations
    def t2i(t): return int("".join(map(str, t)))
    alst = [t2i(p) for p in permutations(range(1, 10)) if t2i(p[:3]) + t2i(p[3:6]) == t2i(p[6:])]
    print(alst) # Michael S. Branicky, May 30 2022

A305712 Polydivisible nonnegative integers whose decimal digits span an initial interval of {0,...,9}.

Original entry on oeis.org

0, 10, 102, 120, 201, 1020, 1200, 2012, 10200, 12000, 12320, 20120, 32120, 102000, 120000, 123204, 321204, 1024023, 1200003, 1232042, 1444023, 2220001, 3212041, 10240232, 12000032, 12320424, 14440232, 32125240, 50165432
Offset: 0

Views

Author

Gus Wiseman, Jun 08 2018

Keywords

Comments

A number with decimal digit sequence {q_1, ..., q_k} is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.

References

  • Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.

Crossrefs

Programs

  • Mathematica
    polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
    normseqs[n_]:=Join@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Sort[FromDigits/@Join@@Table[Select[normseqs[n]-1,First[#]>0&&polyQ[#]&],{n,8}]]

A305715 Irregular triangle whose rows are all finite sequences of positive integers that are polydivisible and strictly pandigital.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 2, 1, 1, 2, 3, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 8, 1, 6, 5, 4, 7, 2, 3, 8, 1, 6, 5, 4, 7, 2, 9, 3, 8, 1, 6, 5, 4, 7, 2, 9, 10
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2018

Keywords

Comments

A positive integer sequence q of length k is strictly pandigital if it is a permutation of {1,2,...,k}. It is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.

Examples

			Triangle is:
  {1}
  {1,2}
  {1,2,3}
  {3,2,1}
  {1,2,3,6,5,4}
  {3,2,1,6,5,4}
  {3,8,1,6,5,4,7,2}
  {3,8,1,6,5,4,7,2,9}
  {3,8,1,6,5,4,7,2,9,10}
		

References

  • Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.

Crossrefs

Programs

  • Mathematica
    polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
    Flatten[Table[Select[Permutations[Range[n]],polyQ],{n,8}]]
Previous Showing 21-30 of 47 results. Next