A254323
Remove in decimal representation of A254143(n) all repeated digits.
Original entry on oeis.org
1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 34, 37, 367, 469, 67, 156, 1258, 136, 1348, 1369, 1468, 278, 238, 2359, 2479, 2569, 268, 34, 37, 367, 367, 489, 469, 67, 1356, 1458, 12358, 12469, 12478, 136, 1348, 13468, 13579, 1468, 2378, 2579
Offset: 1
A257664
a(1)=1; a(n+1) is the smallest positive integer not yet used where the digits of the decimal expansion (disregarding all leading and trailing zeros) of a(n)/a(n+1) have no digit in common with either a(n) or a(n+1).
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 11, 15, 25, 22, 20, 24, 27, 9, 12, 16, 32, 33, 30, 40, 18, 36, 44, 37, 45, 50, 60, 48, 64, 72, 54, 55, 66, 73, 77, 7, 14, 21, 28, 42, 70, 35, 75, 82, 110, 41, 108, 111, 125, 132, 135, 150, 225, 202, 220, 200, 240, 80, 120, 128, 192, 216, 243, 270
Offset: 1
a(2) is 2 because it is the smallest number not yet used where the digits of a(1)/a(2) = .5, i.e., 5, is neither 1 nor 2.
a(3) is 3 because it is the smallest number not yet used where the digits of a(2)/a(3) = .666.., i.e., 6, is neither 2 nor 3.
a(4) is 4 because it is the smallest number not yet used where the digits of a(3)/a(4) = .75, i.e., 5 and 7, are neither 3 nor 4.
a(72) is 63 because it is the smallest number not yet used where the digits of a(71)/a(72) = 90/63 = 1.42857142857.., i.e., 1, 2, 4, 5, 7, and 8, are not any of 0, 3, 6, or 9.
a(376) is 15000 because it is the smallest number not yet used where the digits of a(375)/a(376) = 1025/15000 = .068333.., i.e., 3, 6, and 8 (the zero is leading) are not any of 0, 1, 2, or 5.
-
t = 1; s = {1}; Do[c = 1; d = IntegerDigits[t]; While[Intersection[Flatten[RealDigits[t/c][[1]]], Join[IntegerDigits[c], d]] != {} || MemberQ[s, c], c++]; t = c; AppendTo[s, t], {400}]; s
A286846
Zeroless pandigital (9-digit) numbers where the first three digits minus the middle three digits equals the last three digits.
Original entry on oeis.org
459173286, 459176283, 459183276, 459186273, 459273186, 459276183, 459283176, 459286173, 468173295, 468175293, 468193275, 468195273, 468273195, 468275193, 468293175, 468295173, 486127359, 486129357, 486157329, 486159327, 486327159, 486329157, 486357129
Offset: 1
459173286: 459 - 173 = 286.
-
import java.util.*; public class GenerateSequence {public static void main(String[] args) { Set seq = new TreeSet(); for (long i = 123456789l; i < 987654321; i++) {Set set = new HashSet(); String number = Long.toString(i);if (!(number.contains("0"))) {for (int n = 0; n < 9; n++){set.add(number.charAt(n));} if (set.size() == 9) {if (Integer.valueOf(number.substring(0, 3)) - Integer.valueOf(number.substring(3, 6)) == Integer.valueOf(number.substring(6, 9))) { seq.add(i);} } } System.out.println(seq); } }
-
FromDigits/@Select[Permutations[Range[9]],FromDigits[Take[#,3]]-FromDigits[ Take[ #,{4,6}]]==FromDigits[Take[#,-3]]&] (* Harvey P. Dale, Aug 08 2020 *)
-
from itertools import permutations
def t2i(t): return int("".join(map(str, t)))
alst = [t2i(p) for p in permutations(range(1, 10)) if t2i(p[:3]) - t2i(p[3:6]) == t2i(p[6:])]
print(alst) # Michael S. Branicky, May 30 2022
A305701
Nonnegative integers whose decimal digits span an initial interval of {0,...,9}.
Original entry on oeis.org
0, 10, 100, 101, 102, 110, 120, 201, 210, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1023, 1032, 1100, 1101, 1102, 1110, 1120, 1200, 1201, 1202, 1203, 1210, 1220, 1230, 1302, 1320, 2001, 2010, 2011, 2012, 2013, 2021, 2031, 2100, 2101, 2102, 2103
Offset: 1
-
filter:= proc(n) local L;
L:= convert(convert(n,base,10),set);
L = {$0..max(L)}
end proc:
select(filter, [$0..3000]); # Robert Israel, Jun 10 2018
-
Select[Range[0,10000],Union[IntegerDigits[#]]==Range[0,Max[IntegerDigits[#]]]&]
-
isok(n) = if (n==0, return (1)); my(d=Set(digits(n))); (vecmin(d) == 0) && (vecmax(d) == #d - 1); \\ Michel Marcus, Jul 05 2018
A305714
Number of finite sequences of positive integers of length n that are polydivisible and strictly pandigital.
Original entry on oeis.org
1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1
Offset: 0
Sequence of sets of n-digit numbers that are weakly polydivisible and strictly pandigital is (with A = 10):
{0}
{1}
{12}
{123,321}
{}
{}
{123654,321654}
{}
{38165472}
{381654729}
{381654729A}
Cf.
A000670,
A010784,
A030299,
A050289,
A143671,
A144688,
A156069,
A156071,
A158242,
A163574,
A240763,
A305701,
A305712,
A305715.
A248352
Numbers k such that 10^k - 987654321 is prime.
Original entry on oeis.org
986, 1240, 1928, 4054, 14252, 47528, 101728
Offset: 1
-
Select[Range[10000], PrimeQ[10^# - 987654321] &] (* Robert Price, Dec 05 2019 *)
-
for(n=1,10^4,if(ispseudoprime(10^n-987654321),print1(n,", ")))
A277057
Least k such that n-th repunit times k contains all digits from 1 to 9.
Original entry on oeis.org
123456789, 11225079, 1113198, 210789, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115, 11115
Offset: 1
a(2) = 11225079 because A002275(2)*11225079 = 11*11225079 = 123475869 that contains all digits from 1 to 9 and 11225079 is the least number with this property.
-
isok(n) = my(d=digits(n)); vecmin(d) && (#Set(digits(n)) == 9);
a(n) = {if (n==1, return(123456789)); my(k=1); while(! isok(k*(10^n - 1)/9), k++); k;} \\ Michel Marcus, Sep 26 2019
A289552
Zeroless pandigital numbers (each digit 1-9 used exactly once) where the first 3 digits plus the next 3 digits equals the last 3 digits.
Original entry on oeis.org
124659783, 125739864, 127359486, 127368495, 128367495, 128439567, 129357486, 129438567, 129654783, 129735864, 134658792, 135729864, 138429567, 138654792, 139428567, 139725864, 142596738, 142695837, 143586729, 145692837, 146583729, 146592738, 152487639, 152784936
Offset: 1
124659783: 124 + 659 = 783.
-
import java.util.*;public class Sequence{public static void main(String[] args) {
for (long i = 123456789l; i < 987654321l; i++)
{Set set = new HashSet();String number = Long.toString(i);
if (!(number.contains("0"))) {
for (int n = 0; n < 9; n++) {set.add(number.charAt(n));}
if (set.size() == 9){
if(Integer.valueOf(number.substring(0,3))+Integer.valueOf(number.substring(3,6))==Integer.valueOf(number.substring(6,9)))
{System.out.print(i + ", ");}}}}}}
-
FromDigits/@Select[Permutations[Range[9]],FromDigits[Take[#,3]]+FromDigits[ Take[ #,{4,6}]] == FromDigits[Take[#,-3]]&] (* Harvey P. Dale, Oct 18 2022 *)
-
from itertools import permutations
def t2i(t): return int("".join(map(str, t)))
alst = [t2i(p) for p in permutations(range(1, 10)) if t2i(p[:3]) + t2i(p[3:6]) == t2i(p[6:])]
print(alst) # Michael S. Branicky, May 30 2022
A305712
Polydivisible nonnegative integers whose decimal digits span an initial interval of {0,...,9}.
Original entry on oeis.org
0, 10, 102, 120, 201, 1020, 1200, 2012, 10200, 12000, 12320, 20120, 32120, 102000, 120000, 123204, 321204, 1024023, 1200003, 1232042, 1444023, 2220001, 3212041, 10240232, 12000032, 12320424, 14440232, 32125240, 50165432
Offset: 0
- Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
-
polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
normseqs[n_]:=Join@@Permutations/@Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Sort[FromDigits/@Join@@Table[Select[normseqs[n]-1,First[#]>0&&polyQ[#]&],{n,8}]]
A305715
Irregular triangle whose rows are all finite sequences of positive integers that are polydivisible and strictly pandigital.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 3, 2, 1, 1, 2, 3, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 8, 1, 6, 5, 4, 7, 2, 3, 8, 1, 6, 5, 4, 7, 2, 9, 3, 8, 1, 6, 5, 4, 7, 2, 9, 10
Offset: 1
Triangle is:
{1}
{1,2}
{1,2,3}
{3,2,1}
{1,2,3,6,5,4}
{3,2,1,6,5,4}
{3,8,1,6,5,4,7,2}
{3,8,1,6,5,4,7,2,9}
{3,8,1,6,5,4,7,2,9,10}
- Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
Cf.
A000670,
A010784,
A030299,
A050289,
A143671,
A144688,
A156069,
A156071,
A158242,
A163574,
A240763,
A305701,
A305712,
A305714 (row lengths).
-
polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
Flatten[Table[Select[Permutations[Range[n]],polyQ],{n,8}]]
Comments