0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 3, 0, 7, 3, 0, 0, 3, 0, 0, 10, 11, 0, 3, 0, 0, 3, 7, 0, 18, 0, 0, 14, 0, 7, 3, 0, 19, 3, 0, 0, 10, 0, 11, 18, 23, 0, 3, 7, 0, 3, 0, 0, 30, 11, 7, 22, 0, 0, 18, 0, 31, 10, 0, 0, 14, 0, 0, 26, 42, 0, 3, 0, 0, 18, 19, 18, 42, 0, 0, 30, 0, 0, 10, 0, 43, 3, 11, 0, 18, 7, 23, 34, 47, 19, 3, 0, 7, 14, 0, 0, 54, 0, 0, 60
Offset: 1
A363904
Expansion of Sum_{k>0} x^(3*k) / (1 - x^(4*k))^2.
Original entry on oeis.org
0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 3, 1, 0, 2, 5, 0, 0, 1, 5, 0, 3, 3, 6, 1, 0, 0, 8, 2, 0, 5, 8, 0, 4, 0, 11, 1, 0, 5, 11, 0, 0, 3, 11, 3, 5, 6, 12, 1, 2, 0, 14, 0, 0, 8, 17, 2, 6, 0, 15, 5, 0, 8, 19, 0, 0, 4, 17, 0, 7, 11, 18, 1, 0, 0, 24, 5, 5, 11, 20, 0, 8, 0, 21, 3, 0, 11, 23, 3, 0, 5, 25, 6
Offset: 1
-
a[n_] := DivisorSum[n, # + 1 &, Mod[#, 4] == 3 &]/4; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
-
a(n) = sumdiv(n, d, (d%4==3)*(d+1))/4;
A082053
Sum of divisors of n that are not of the form 4k+3.
Original entry on oeis.org
1, 3, 1, 7, 6, 9, 1, 15, 10, 18, 1, 25, 14, 17, 6, 31, 18, 36, 1, 42, 22, 25, 1, 57, 31, 42, 10, 49, 30, 54, 1, 63, 34, 54, 6, 88, 38, 41, 14, 90, 42, 86, 1, 73, 60, 49, 1, 121, 50, 93, 18, 98, 54, 90, 6, 113, 58, 90, 1, 150, 62, 65, 31, 127, 84, 130, 1, 126, 70, 102, 1, 192
Offset: 1
-
sd[n_]:= Total[Select[Divisors[n], !IntegerQ[(# - 3) / 4]&]]; Array[sd, 100] (* Vincenzo Librandi, May 17 2013 *)
-
for(n=1,100,print1(sumdiv(n,d,if(d%4!=3,d))","))
A363392
Sum of divisors of 4*n-2 of form 4*k+3.
Original entry on oeis.org
0, 3, 0, 7, 3, 11, 0, 18, 0, 19, 10, 23, 0, 30, 0, 31, 14, 42, 0, 42, 0, 43, 18, 47, 7, 54, 0, 66, 22, 59, 0, 73, 0, 67, 26, 71, 0, 93, 18, 79, 30, 83, 0, 90, 0, 98, 34, 114, 0, 113, 0, 103, 60, 107, 0, 114, 0, 138, 42, 126, 11, 126, 0, 127, 46, 131, 26, 180, 0, 139, 50, 154, 0, 157, 0, 151, 54, 186, 0, 162, 30
Offset: 1
-
a[n_] := DivisorSum[4*n - 2, # &, Mod[#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Jul 08 2023 *)
-
a(n) = sumdiv(4*n-2, d, (d%4==3)*d);
A374019
Expansion of Product_{k>=1} 1 / (1 - x^(4*k-1))^2.
Original entry on oeis.org
1, 0, 0, 2, 0, 0, 3, 2, 0, 4, 4, 2, 5, 6, 7, 8, 8, 12, 15, 12, 17, 26, 23, 24, 37, 40, 39, 50, 62, 66, 74, 86, 101, 116, 122, 144, 175, 184, 202, 246, 274, 294, 340, 388, 432, 480, 533, 610, 684, 742, 835, 956, 1045, 1144, 1299, 1450, 1586, 1758, 1965, 2182, 2400, 2638, 2941, 3268, 3560, 3922
Offset: 0
-
nmax = 65; CoefficientList[Series[Product[1/(1 - x^(4 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]
A363359
Sum of divisors of 4*n-1 of form 4*k+3.
Original entry on oeis.org
3, 7, 11, 18, 19, 23, 30, 31, 42, 42, 43, 47, 54, 66, 59, 73, 67, 71, 93, 79, 83, 90, 98, 114, 113, 103, 107, 114, 138, 126, 126, 127, 131, 180, 139, 154, 157, 151, 186, 162, 163, 167, 193, 217, 179, 186, 198, 191, 252, 199, 210, 233, 211, 258, 222, 223, 227, 252, 282, 239, 273, 266, 251, 324, 266, 263, 270
Offset: 1
-
a[n_] := DivisorSum[4*n - 1, # &, Mod[#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Jul 08 2023 *)
-
a(n) = sumdiv(4*n-1, d, (d%4==3)*d);
A363407
Sum of divisors of 4*n-3 of form 4*k+3.
Original entry on oeis.org
0, 0, 3, 0, 0, 10, 0, 0, 14, 0, 0, 18, 7, 0, 22, 0, 0, 26, 0, 18, 30, 0, 0, 34, 0, 0, 60, 0, 0, 42, 11, 0, 46, 26, 0, 50, 0, 0, 54, 0, 30, 84, 0, 0, 62, 0, 0, 100, 0, 0, 70, 0, 30, 74, 38, 0, 93, 0, 0, 82, 0, 42, 86, 34, 0, 90, 0, 0, 140, 0, 0, 132, 0, 0, 140, 50, 0, 106, 0, 0, 110, 0, 54, 114, 0, 42, 156
Offset: 1
-
a[n_] := DivisorSum[4*n - 3, # &, Mod[#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Jul 08 2023 *)
-
a(n) = sumdiv(4*n-3, d, (d%4==3)*d);
Comments