cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A321835 a(n) = Sum_{d|n, n/d==1 mod 4} d^11 - Sum_{d|n, n/d==3 mod 4} d^11.

Original entry on oeis.org

1, 2048, 177146, 4194304, 48828126, 362795008, 1977326742, 8589934592, 31380882463, 100000002048, 285311670610, 743004176384, 1792160394038, 4049565167616, 8649707208396, 17592186044416, 34271896307634, 64268047284224, 116490258898218
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Cf. A101455.
Cf. A321807 - A321836 for related sequences.
Glaisher's E'_i (i=0..12): A002654, A050469, A050470, A050471, A050468, A321829, A321830, A321831, A321832, A321833, A321834, this sequence, A321836.

Programs

  • Mathematica
    s[n_,r_] := DivisorSum[n, #^11 &, Mod[n/#,4]==r &]; a[n_] := s[n,1] - s[n,3]; Array[a, 30] (* Amiram Eldar, Nov 26 2018 *)
    s[n_] := If[OddQ[n], (-1)^((n-1)/2), 0]; (* A101455 *)
    f[p_, e_] := (p^(11*e+11) - s[p]^(e+1))/(p^11 - s[p]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 04 2023 *)
  • PARI
    apply( a(n)=sumdiv(n,d,if(bittest(n\d,0),(2-n\d%4)*d^11)), [1..30]) \\ M. F. Hasler, Nov 26 2018

Formula

G.f.: Sum_{k>=1} k^11*x^k/(1 + x^(2*k)). - Ilya Gutkovskiy, Nov 26 2018
From Amiram Eldar, Nov 04 2023: (Start)
Multiplicative with a(p^e) = (p^(11*e+11) - A101455(p)^(e+1))/(p^11 - A101455(p)).
Sum_{k=1..n} a(k) ~ c * n^12 / 12, where c = beta(12) = 0.99999812235..., and beta is the Dirichlet beta function. (End)
a(n) = Sum_{d|n} (n/d)^11*sin(d*Pi/2). - Ridouane Oudra, Sep 27 2024

A000144 Number of ways of writing n as a sum of 10 squares.

Original entry on oeis.org

1, 20, 180, 960, 3380, 8424, 16320, 28800, 52020, 88660, 129064, 175680, 262080, 386920, 489600, 600960, 840500, 1137960, 1330420, 1563840, 2050344, 2611200, 2986560, 3358080, 4194240, 5318268, 5878440, 6299520, 7862400, 9619560
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 20*x + 180*x^2 + 960*x^3 + 3380*x^4 + 8424*x^5 + 16320*x^6 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York 1959, p. 135 section 9.3. MR0106147 (21 #4881)

Crossrefs

Row d=10 of A122141 and of A319574, 10th column of A286815.

Programs

  • Maple
    (sum(x^(m^2),m=-10..10))^10;
    # Alternative:
    A000144list := proc(len) series(JacobiTheta3(0, x)^10, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000144list(30); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[10, n], {n, 0, 30}] (* Ray Chandler, Jun 29 2008; updated by T. D. Noe, Jan 23 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^10, {q, 0, n}]; (* Michael Somos, Aug 26 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 - x^k)^10 * (1 + x^k)^30 / (1 + x^(2*k))^20, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 24 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^10, n))}; /* Michael Somos, Sep 12 2005 */
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*10)
    Q.representation_number_list(37) # Peter Luschny, Jun 20 2014

Formula

Euler transform of period 4 sequence [ 20, -30, 20, -10, ...]. - Michael Somos, Sep 12 2005
Expansion of eta(q^2)^50 / (eta(q) * eta(q^4))^20 in powers of q. - Michael Somos, Sep 12 2005
a(n) = 4/5 * (A050456(n) + 16*A050468(n) + 8*A030212(n)) if n>0. - Michael Somos, Sep 12 2005
a(n) = (20/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

Extensions

Extended by Ray Chandler, Nov 28 2006

A050463 a(n) = Sum_{d|n, n/d=1 mod 4} d^4.

Original entry on oeis.org

1, 16, 81, 256, 626, 1296, 2401, 4096, 6562, 10016, 14641, 20736, 28562, 38416, 50706, 65536, 83522, 104992, 130321, 160256, 194482, 234256, 279841, 331776, 391251, 456992, 531522, 614656, 707282, 811296, 923521, 1048576, 1185922
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^4 &, Mod[n/#, 4] == 1 &]; Array[a, 50] (* Amiram Eldar, Jul 08 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 1) * d^4); \\ Amiram Eldar, Nov 05 2023

Formula

From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A285989(n) - A050467(n).
a(n) = A050468(n) + A050467(n).
a(n) = (A050468(n) + A285989(n))/2.
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 5*Pi^5/3072 + 31*zeta(5)/64 = 1.000340795436113... . (End)

Extensions

Offset changed from 0 to 1 by Seiichi Manyama, Jul 08 2023

A050467 a(n) = Sum_{d|n, n/d=3 mod 4} d^4.

Original entry on oeis.org

0, 0, 1, 0, 0, 16, 1, 0, 81, 0, 1, 256, 0, 16, 626, 0, 0, 1296, 1, 0, 2482, 16, 1, 4096, 0, 0, 6562, 256, 0, 10016, 1, 0, 14722, 0, 626, 20736, 0, 16, 28562, 0, 0, 39712, 1, 256, 50706, 16, 1, 65536, 2401, 0, 83522, 0, 0, 104992, 626, 4096, 130402
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[Divisors[n],Mod[n/#,4]==3&]^4],{n,60}] (* Harvey P. Dale, Jun 10 2023 *)
    a[n_] := DivisorSum[n, #^4 &, Mod[n/#, 4] == 3 &]; Array[a, 50] (* Amiram Eldar, Nov 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^4); \\ Amiram Eldar, Nov 05 2023

Formula

From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A285989(n) - A050463(n).
a(n) = A050463(n) - A050468(n).
a(n) = (A285989(n) - A050468(n))/2.
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 31*zeta(5)/64 - 5*Pi^5/3072 = 0.00418296735902... . (End)

Extensions

Offset corrected by Amiram Eldar, Nov 05 2023

A322084 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n, n/d==1 (mod 4)} d^k - Sum_{d|n, n/d==3 (mod 4)} d^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 4, 2, 1, 1, 8, 8, 4, 2, 1, 16, 26, 16, 6, 0, 1, 32, 80, 64, 26, 4, 0, 1, 64, 242, 256, 126, 32, 6, 1, 1, 128, 728, 1024, 626, 208, 48, 8, 1, 1, 256, 2186, 4096, 3126, 1280, 342, 64, 7, 2, 1, 512, 6560, 16384, 15626, 7744, 2400, 512, 73, 12, 0, 1, 1024, 19682, 65536, 78126, 46592, 16806, 4096, 703, 104, 10, 0
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1,  ...
  1,  2,   4,    8,    16,    32,  ...
  0,  2,   8,   26,    80,   242,  ...
  1,  4,  16,   64,   256,  1024,  ...
  2,  6,  26,  126,   626,  3126,  ...
  0,  4,  32,  208,  1280,  7744,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[j^k x^j/(1 + x^(2 j)), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
  • PARI
    T(n,k)={sumdiv(n, d, if(d%2, (-1)^((d-1)/2)*(n/d)^k))}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} j^k*x^j/(1 + x^(2*j)).

A204342 a(n) = (-1)^n * Sum_{2*m + 1 | 2*n + 1} (-1)^m (2*m + 1)^4.

Original entry on oeis.org

1, 80, 626, 2400, 6481, 14640, 28562, 50080, 83522, 130320, 192000, 279840, 391251, 524960, 707282, 923520, 1171200, 1502400, 1874162, 2284960, 2825762, 3418800, 4057106, 4879680, 5762401, 6681760, 7890482, 9164640, 10425600
Offset: 0

Views

Author

Michael Somos, Jan 14 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 80*x + 626*x^2 + 2400*x^3 + 6481*x^4 + 14640*x^5 + 28562*x^6 + ...
q + 80*q^3 + 626*q^5 + 2400*q^7 + 6481*q^9 + 14640*q^11 + 28562*q^13 + ...
a(1) = 80 since (-1)^1 * ( (-1)^0 * 1^4 + (-1)^1 * 3^4) = 80 where 1 and 3 are the odd divisors of 3 = 2*1 + 1.
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 315.

Crossrefs

Programs

  • Mathematica
    QP:= QPochhammer[q]; a[n_]:= SeriesCoefficient[QP[q^2]^14* (QP[q]^8 + 80*q*QP[q^4]^8)/(QP[q]^8*QP[q^4]^4), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 11 2018 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 2*n + 1, d, (-1)^(d\2) *  d^4))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^14 * (eta(x + A)^8 + 80 * x * eta(x^4 + A)^8) / (eta(x + A)^8 * eta(x^4 + A)^4), n))}

Formula

Expansion of phi(x)^4 * psi(x^2)^2 * (phi(x)^4 + 64 * x * psi(x^2)^4) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of q^(-1/2) * eta(q^2)^14 * (eta(q)^8 + 80 * q * eta(q^4)^8) / (eta(q)^8 * eta(q^4)^4) in powers of q.
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = ((p^4)^(e+1) + 1) / (p^4 + 1) if p == 3 (mod 4), b(p^e) = ((p^4)^(e+1) - 1) / (p^4 - 1) if p == 1 (mod 4).
G.f.: Sum_{k > 0} (2*k - 1)^4 * x^(2*k - 1) / (1 + x^(4*k - 2)).
a(n) = A050468(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^5, where c = Pi^5/96 = 3.187705... . - Amiram Eldar, Dec 29 2023

A204372 Expansion of phi(x)^2 * (5 * phi(-x)^8 + 64 * x * psi(-x)^8) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

5, 4, 4, -320, 4, 2504, -320, -9600, 4, 25924, 2504, -58560, -320, 114248, -9600, -200320, 4, 334088, 25924, -521280, 2504, 768000, -58560, -1119360, -320, 1565004, 114248, -2099840, -9600, 2829128, -200320, -3694080, 4, 4684800
Offset: 0

Views

Author

Michael Somos, Jan 14 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 5 + 4*x + 4*x^2 - 320*x^3 + 4*x^4 + 2504*x^5 - 320*x^6 - 9600*x^7 + 4*x^8 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(4), 5), 34); 5*A[1] + 4*A[2] + 4*A[3]; /* Michael Somos, May 04 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 (5 EllipticTheta[ 4, 0, q]^8 + 4 EllipticTheta[ 2, Pi/4, q^(1/2)]^8), {q, 0, n}]; (* Michael Somos, May 03 2015 *)
    a[ n_] := If[ n < 1, 5 Boole[n == 0], 4 DivisorSum[ n, #^4 KroneckerSymbol[ -4, #] &]]; (* Michael Somos, May 04 2015 *)
  • PARI
    {a(n) = if( n<1, 5 * (n==0), 4 * sumdiv( n, d, d^4 * kronecker( -4, d)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^2 + A)^2 * (5 * eta(x + A)^8 / eta(x^4 + A)^4 + 64 * x * eta(x^4 + A)^4 ), n))};
    

Formula

Expansion of eta(q)^4 * eta(q^2)^2 * (5 * eta(q)^8 / eta(q^4)^4 + 64 * q * eta(q^4)^4 ) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4*t)) = 2048 (t/i)^5 g(t) where q = exp(2*Pi*i*t) and g(t) is the g.f. for A050468.
G.f.: 5 + 4 * Sum_{k>0} (-1)^(k-1) * (2*k - 1)^4 * x^(2*k - 1) / (1 - x^(2*k - 1)).
a(n) = 4 * A050456(n) if n>0.

A204386 Expansion of (theta_2(q)^8 + 4 * theta_2(q^2)^8) / 256 in powers of q^2.

Original entry on oeis.org

1, 12, 28, 96, 126, 336, 344, 768, 757, 1512, 1332, 2688, 2198, 4128, 3528, 6144, 4914, 9084, 6860, 12096, 9632, 15984, 12168, 21504, 15751, 26376, 20440, 33024, 24390, 42336, 29792, 49152, 37296, 58968, 43344, 72672, 50654, 82320, 61544, 96768
Offset: 1

Views

Author

Michael Somos, Jan 15 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			x + 12*x^2 + 28*x^3 + 96*x^4 + 126*x^5 + 336*x^6 + 344*x^7 + 768*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[(EllipticTheta[2, 0, q^(1/2)]^8 + 4*EllipticTheta[2, 0, q]^8)/256, {q, 0, n}];  Table[a[n], {n,1,50}] (* G. C. Greubel, Apr 13 2018 *)
    CoefficientList[Series[(EllipticTheta[2,0,q^(1/2)]^8 +4*EllipticTheta[2, 0, q]^8)/ 256, {q, 0, 50}], q] (* Vaclav Kotesovec, Apr 13 2018 *)
  • PARI
    {a(n) = if( n<1, 0, if( n%2, sigma( n, 3), 12 * sumdiv( n/2, d, (n/2/d%2) * d^3)))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A))^8 + 4 * x * (eta(x^4 + A)^2 / eta(x^2 + A))^8, n))}

Formula

Expansion of x * psi(x)^8 + 4 * x^2 * psi(x^2)^8 in powers of x where psi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 / eta(q))^8 + 4 * (eta(q^4)^2 / eta(q^2))^8 in powers of q.
a(n) is multiplicative with a(2^e) = 3/2 * 8^e if e>0, a(p^e) = ((p^3) ^ (e+1) - 1) / (p^3 - 1).
a(2*n + 1) = A045823(n). a(2*n) = 12 * A007331(n).
Convolution of this sequence with A004018 is A050468.
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 + 1/2^(s-2)) * (1 - 1/2^s) * zeta(s-3) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^4, where c = 5*Pi^4/1536 = 0.317086... . (End)
Previous Showing 11-18 of 18 results.