cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A326077 Number of maximal primitive subsets of {1..n}.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 6, 7, 11, 11, 13, 13, 23, 24, 36, 36, 48, 48, 64, 66, 126, 126, 150, 151, 295, 363, 507, 507, 595, 595, 895, 903, 1787, 1788, 2076, 2076, 4132, 4148, 5396, 5396, 6644, 6644, 9740, 11172, 22300, 22300, 26140, 26141, 40733, 40773, 60333, 60333, 80781, 80783
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

a(n) is the number of maximal primitive subsets of {1, ..., n}. Here primitive means that no element of the subset divides any other and maximal means that no element can be added to the subset while maintaining the property of being pairwise indivisible. - Nathan McNew, Aug 10 2020

Examples

			The a(0) = 1 through a(9) = 7 sets:
  {}  {1}  {1}  {1}   {1}   {1}    {1}    {1}     {1}     {1}
           {2}  {23}  {23}  {235}  {235}  {2357}  {2357}  {2357}
                      {34}  {345}  {345}  {3457}  {3457}  {2579}
                                   {456}  {4567}  {3578}  {3457}
                                                  {4567}  {3578}
                                                  {5678}  {45679}
                                                          {56789}
		

Crossrefs

Programs

  • Mathematica
    stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
    fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],stableQ[#,Divisible]&]]],{n,0,10}]
  • PARI
    divset(n)={sumdiv(n, d, if(dif(k>#p, ismax(b), my(f=!bitand(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 30 2019

Extensions

Terms a(19) to a(55) from Andrew Howroyd, Aug 30 2019
Name edited by Nathan McNew, Aug 10 2020

A326079 Number of subsets of {1..n} containing all of their integer quotients > 1.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 48, 96, 144, 288, 432, 864, 1104, 2208, 3312, 5184, 7872, 15744, 20112, 40224, 53376, 84640, 126960, 253920, 309600, 619200, 928800, 1475136, 1984320, 3968640, 4901760, 9803520, 12585600, 20394624, 30591936, 52483392, 65894976, 131789952, 197684928, 323175744, 411685056
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

These sets are closed under taking the quotient of two distinct divisible terms.

Examples

			The a(6) = 48 subsets:
  {}  {1}  {1,2}  {1,2,3}  {1,2,3,4}  {1,2,3,4,5}  {1,2,3,4,5,6}
      {2}  {1,3}  {1,2,4}  {1,2,3,5}  {1,2,3,4,6}
      {3}  {1,4}  {1,2,5}  {1,2,3,6}  {1,2,3,5,6}
      {4}  {1,5}  {1,3,4}  {1,2,4,5}  {2,3,4,5,6}
      {5}  {1,6}  {1,3,5}  {1,3,4,5}
      {6}  {2,3}  {1,4,5}  {1,4,5,6}
           {2,4}  {1,4,6}  {2,3,4,5}
           {2,5}  {1,5,6}  {2,3,4,6}
           {3,4}  {2,3,4}  {2,3,5,6}
           {3,5}  {2,3,5}
           {4,5}  {2,3,6}
           {4,6}  {2,4,5}
           {5,6}  {3,4,5}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]&]],{n,0,10}]

Formula

For n > 0, a(n) = 2 * A326078(n) = 2 * (A326023(n) - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 30 2019

A100565 a(n) = Card{(x,y,z) : x <= y <= z, x|n, y|n, z|n, gcd(x,y)=1, gcd(x,z)=1, gcd(y,z)=1}.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 4, 3, 5, 2, 8, 2, 5, 5, 5, 2, 8, 2, 8, 5, 5, 2, 11, 3, 5, 4, 8, 2, 15, 2, 6, 5, 5, 5, 13, 2, 5, 5, 11, 2, 15, 2, 8, 8, 5, 2, 14, 3, 8, 5, 8, 2, 11, 5, 11, 5, 5, 2, 25, 2, 5, 8, 7, 5, 15, 2, 8, 5, 15, 2, 18, 2, 5, 8, 8, 5, 15, 2, 14, 5, 5, 2, 25, 5, 5, 5, 11, 2, 25, 5, 8, 5, 5, 5, 17
Offset: 1

Views

Author

Vladeta Jovovic, Nov 28 2004

Keywords

Comments

First differs from A018892 at a(30) = 15, A018892(30) = 14.
First differs from A343654 at a(210) = 51, A343654(210) = 52.
Also a(n) = Card{(x,y,z) : x <= y <= z and lcm(x,y)=n, lcm(x,z)=n, lcm(y,z)=n}.
In words, a(n) is the number of pairwise coprime unordered triples of divisors of n. - Gus Wiseman, May 01 2021

Examples

			From _Gus Wiseman_, May 01 2021: (Start)
The a(n) triples for n = 1, 2, 4, 6, 8, 12, 24:
  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)  (1,1,1)   (1,1,1)
           (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)  (1,1,2)   (1,1,2)
                    (1,1,4)  (1,1,3)  (1,1,4)  (1,1,3)   (1,1,3)
                             (1,1,6)  (1,1,8)  (1,1,4)   (1,1,4)
                             (1,2,3)           (1,1,6)   (1,1,6)
                                               (1,2,3)   (1,1,8)
                                               (1,3,4)   (1,2,3)
                                               (1,1,12)  (1,3,4)
                                                         (1,3,8)
                                                         (1,1,12)
                                                         (1,1,24)
(End)
		

Crossrefs

Positions of 2's through 5's are A000040, A001248, A030078, A068993.
The version for subsets of {1..n} instead of divisors is A015617.
The version for pairs of divisors is A018892.
The ordered version is A048785.
The strict case is A066620.
The version for strict partitions is A220377.
A version for sets of divisors of any size is A225520.
The version for partitions is A307719 (no 1's: A337563).
The case of distinct parts coprime is A337600 (ordered: A337602).
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A051026 counts pairwise indivisible subsets of {1..n}.
A302696 lists Heinz numbers of pairwise coprime partitions.
A337461 counts 3-part pairwise coprime compositions.

Programs

  • Mathematica
    pwcop[y_]:=And@@(GCD@@#==1&/@Subsets[y,{2}]);
    Table[Length[Select[Tuples[Divisors[n],3],LessEqual@@#&&pwcop[#]&]],{n,30}] (* Gus Wiseman, May 01 2021 *)
  • PARI
    A100565(n) = (numdiv(n^3)+3*numdiv(n)+2)/6; \\ Antti Karttunen, May 19 2017

Formula

a(n) = (tau(n^3) + 3*tau(n) + 2)/6.

A326081 Number of subsets of {1..n} containing the product of any set of distinct elements whose product is <= n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 56, 112, 200, 400, 728, 1456, 2368, 4736, 8896, 16112, 30016, 60032, 105472, 210944, 366848, 679680, 1327232, 2654464, 4434176, 8868352, 17488640, 33118336, 60069248, 120138496, 206804224, 413608448, 759882880, 1461600128, 2909298496, 5319739328
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

For n > 0, this sequence divided by 2 first differs from A326116 at a(12)/2 = 1184, A326116(12) = 1232.
If A326117 counts product-free sets, this sequence counts product-closed sets.
The non-strict case is A326076.

Examples

			The a(6) = 56 subsets:
  {}  {1}  {1,2}  {1,2,4}  {1,2,3,6}  {1,2,3,4,6}  {1,2,3,4,5,6}
      {2}  {1,3}  {1,2,5}  {1,2,4,5}  {1,2,3,5,6}
      {3}  {1,4}  {1,2,6}  {1,2,4,6}  {1,2,4,5,6}
      {4}  {1,5}  {1,3,4}  {1,2,5,6}  {1,3,4,5,6}
      {5}  {1,6}  {1,3,5}  {1,3,4,5}  {2,3,4,5,6}
      {6}  {2,4}  {1,3,6}  {1,3,4,6}
           {2,5}  {1,4,5}  {1,3,5,6}
           {2,6}  {1,4,6}  {1,4,5,6}
           {3,4}  {1,5,6}  {2,3,4,6}
           {3,5}  {2,3,6}  {2,3,5,6}
           {3,6}  {2,4,5}  {2,4,5,6}
           {4,5}  {2,4,6}  {3,4,5,6}
           {4,6}  {2,5,6}
           {5,6}  {3,4,5}
                  {3,4,6}
                  {3,5,6}
                  {4,5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Times@@@Subsets[#,{2}],#<=n&]]&]],{n,0,10}]

Formula

For n > 0, a(n) = 2 * A308542(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 24 2019

A326495 Number of subsets of {1..n} containing no sums or products of pairs of elements.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 30, 45, 71, 101, 171, 258, 427, 606, 988, 1328, 2141, 3116, 4952, 6955, 11031, 15320, 23978, 33379, 48698, 66848, 104852, 144711, 220757, 304132, 461579, 636555, 973842, 1316512, 1958827, 2585432, 3882842, 5237092, 7884276, 10555738, 15729292
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

The pairs are not required to be strict.

Examples

			The a(1) = 1 through a(6) = 17 subsets:
  {}  {}   {}     {}     {}       {}
      {2}  {2}    {2}    {2}      {2}
           {3}    {3}    {3}      {3}
           {2,3}  {4}    {4}      {4}
                  {2,3}  {5}      {5}
                  {3,4}  {2,3}    {6}
                         {2,5}    {2,3}
                         {3,4}    {2,5}
                         {3,5}    {2,6}
                         {4,5}    {3,4}
                         {3,4,5}  {3,5}
                                  {4,5}
                                  {4,6}
                                  {5,6}
                                  {2,5,6}
                                  {3,4,5}
                                  {4,5,6}
		

Crossrefs

Subsets without sums are A007865.
Subsets without products are A326489.
Subsets without differences or quotients are A326490.
Maximal subsets without sums or products are A326497.
Subsets with sums (and products) are A326083.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]],{n,0,10}]

Formula

For n > 0, a(n) = A326490(n) - 1.

Extensions

a(19)-a(41) from Andrew Howroyd, Aug 25 2019

A326497 Number of maximal sum-free and product-free subsets of {1..n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 15, 21, 26, 38, 51, 69, 89, 119, 149, 197, 261, 356, 447, 601, 781, 1003, 1293, 1714, 2228, 2931, 3697, 4843, 6258, 8187, 10273, 13445, 16894, 21953, 27469, 35842, 45410, 58948, 73939, 95199, 120593, 154510, 192995, 247966, 312642
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Comments

A set is sum-free and product-free if it contains no sum or product of two (not necessarily distinct) elements.

Examples

			The a(2) = 1 through a(10) = 15 subsets (A = 10):
  {2}  {23}  {23}  {23}   {23}   {237}   {256}   {267}    {23A}
             {34}  {25}   {256}  {256}   {258}   {345}    {345}
                   {345}  {345}  {267}   {267}   {357}    {34A}
                          {456}  {345}   {345}   {2378}   {357}
                                 {357}   {357}   {2569}   {38A}
                                 {4567}  {2378}  {2589}   {2378}
                                         {4567}  {4567}   {2569}
                                         {5678}  {4679}   {2589}
                                                 {56789}  {267A}
                                                          {269A}
                                                          {4567}
                                                          {4679}
                                                          {479A}
                                                          {56789}
                                                          {6789A}
		

Crossrefs

Sum-free and product-free subsets are A326495.
Sum-free subsets are A007865.
Maximal sum-free subsets are A121269.
Product-free subsets are A326489.
Maximal product-free subsets are A326496.
Subsets with sums (and products) are A326083.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]]],{n,0,10}]
  • PARI
    \\ See link for program file.
    for(n=0, 37, print1(A326497(n), ", ")) \\ Andrew Howroyd, Aug 30 2019

Extensions

a(21)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Oct 11 2020

A326078 Number of subsets of {2..n} containing all of their integer quotients > 1.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 24, 48, 72, 144, 216, 432, 552, 1104, 1656, 2592, 3936, 7872, 10056, 20112, 26688, 42320, 63480, 126960, 154800, 309600, 464400, 737568, 992160, 1984320, 2450880, 4901760, 6292800, 10197312, 15295968, 26241696, 32947488, 65894976, 98842464, 161587872, 205842528
Offset: 0

Views

Author

Gus Wiseman, Jun 05 2019

Keywords

Comments

These sets are closed under taking the quotient of two distinct divisible terms.

Examples

			The a(6) = 24 subsets:
  {}  {2}  {2,3}  {2,3,4}  {2,3,4,5}  {2,3,4,5,6}
      {3}  {2,4}  {2,3,5}  {2,3,4,6}
      {4}  {2,5}  {2,3,6}  {2,3,5,6}
      {5}  {3,4}  {2,4,5}
      {6}  {3,5}  {3,4,5}
           {4,5}  {4,5,6}
           {4,6}
           {5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],SubsetQ[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]&]],{n,0,10}]
  • PARI
    a(n)={
        my(lim=vector(n, k, sqrtint(k)));
        my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b,i) != bittest(b,k/i), return(0))); 1);
        my(recurse(k, b)=
          my(m=1);
          for(j=max(2*k,n\2+1), min(2*k+1,n), if(accept(b,j), m*=2));
          k++;
          m*if(k > n\2, 1, (self()(k, b) + if(accept(b, k), self()(k, b + (1<Andrew Howroyd, Aug 30 2019

Formula

For n > 0, a(n) = A326023(n) - 1.
For n > 0, a(n) = A326079(n)/2.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 30 2019

A326116 Number of subsets of {2..n} containing no products of two or more distinct elements.

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1232, 2464, 4592, 8296, 15920, 31840, 55952, 111904, 195712, 362336, 697360, 1394720, 2334112, 4668224, 9095392, 17225312, 31242784, 62485568, 106668608, 213337216, 392606528, 755131840, 1491146912, 2727555424, 4947175712
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2019

Keywords

Comments

First differs from A308542 at a(12) = 1232, A308542(12) = 1184.
If this sequence counts product-free sets, A308542 counts product-closed sets.

Examples

			The a(6) = 28 subsets:
  {}  {2}  {2,3}  {2,3,4}  {2,3,4,5}
      {3}  {2,4}  {2,3,5}  {2,4,5,6}
      {4}  {2,5}  {2,4,5}  {3,4,5,6}
      {5}  {2,6}  {2,4,6}
      {6}  {3,4}  {2,5,6}
           {3,5}  {3,4,5}
           {3,6}  {3,4,6}
           {4,5}  {3,5,6}
           {4,6}  {4,5,6}
           {5,6}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[2,n]],Intersection[#,Select[Times@@@Subsets[#,{2}],#<=n&]]=={}&]],{n,10}]
  • PARI
    a(n)={
       my(recurse(k, ep)=
        if(k > n, 1,
          my(t = self()(k + 1, ep));
          if(!bittest(ep,k),
             forstep(i=n\k, 1, -1, if(bittest(ep,i), ep=bitor(ep,1<<(k*i))));
             t += self()(k + 1, ep);
          );
          t);
       );
       recurse(2, 2);
    } \\ Andrew Howroyd, Aug 25 2019

Formula

For n > 0, a(n) = A326117(n) - 1.

Extensions

Terms a(21)-a(36) from Andrew Howroyd, Aug 25 2019

A326491 Number of maximal subsets of {1..n} containing no differences or quotients of pairs of distinct elements.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 7, 9, 10, 16, 22, 27, 39, 52, 70, 90, 120, 150, 198, 262, 357, 448, 602, 782, 1004, 1294, 1715, 2229, 2932, 3698, 4844, 6259, 8188, 10274, 13446, 16895, 21954, 27470, 35843, 45411, 58949, 73940, 95200, 120594, 154511, 192996, 247967, 312643
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2019

Keywords

Examples

			The a(1) = 1 through a(9) = 10 subsets:
  {1}  {1}  {1}    {1}    {1}      {1}      {1}        {1}        {1}
       {2}  {2,3}  {2,3}  {2,3}    {2,3}    {2,3,7}    {2,5,6}    {2,6,7}
                   {3,4}  {2,5}    {2,5,6}  {2,5,6}    {2,5,8}    {3,4,5}
                          {3,4,5}  {3,4,5}  {2,6,7}    {2,6,7}    {3,5,7}
                                   {4,5,6}  {3,4,5}    {3,4,5}    {2,3,7,8}
                                            {3,5,7}    {3,5,7}    {2,5,6,9}
                                            {4,5,6,7}  {2,3,7,8}  {2,5,8,9}
                                                       {4,5,6,7}  {4,5,6,7}
                                                       {5,6,7,8}  {4,6,7,9}
                                                                  {5,6,7,8,9}
		

Crossrefs

Subsets without differences or quotients are A326490.
Subsets with differences and quotients are A326494.
Maximal subsets without differences are A121269
Maximal subsets without quotients are A326492.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]]],{n,0,10}]

Formula

a(n) = A326497(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019

Extensions

a(16)-a(40) from Andrew Howroyd, Aug 30 2019
a(41)-a(48) from Jinyuan Wang, Mar 04 2025

A343655 Number of pairwise coprime sets of divisors of n, where a singleton is not considered pairwise coprime unless it is {1}.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 2, 4, 3, 6, 2, 10, 2, 6, 6, 5, 2, 10, 2, 10, 6, 6, 2, 14, 3, 6, 4, 10, 2, 22, 2, 6, 6, 6, 6, 17, 2, 6, 6, 14, 2, 22, 2, 10, 10, 6, 2, 18, 3, 10, 6, 10, 2, 14, 6, 14, 6, 6, 2, 38, 2, 6, 10, 7, 6, 22, 2, 10, 6, 22, 2, 24, 2, 6, 10, 10, 6, 22, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Comments

First differs from A015995 at a(210) = 88, A015995(210) = 86.

Examples

			For example, the a(n) subsets for n = 1, 2, 4, 6, 8, 12, 16, 24 are:
  {1}  {1}    {1}    {1}      {1}    {1}      {1}     {1}
       {1,2}  {1,2}  {1,2}    {1,2}  {1,2}    {1,2}   {1,2}
              {1,4}  {1,3}    {1,4}  {1,3}    {1,4}   {1,3}
                     {1,6}    {1,8}  {1,4}    {1,8}   {1,4}
                     {2,3}           {1,6}    {1,16}  {1,6}
                     {1,2,3}         {2,3}            {1,8}
                                     {3,4}            {2,3}
                                     {1,12}           {3,4}
                                     {1,2,3}          {3,8}
                                     {1,3,4}          {1,12}
                                                      {1,24}
                                                      {1,2,3}
                                                      {1,3,4}
                                                      {1,3,8}
		

Crossrefs

The case of pairs is A063647.
The case of triples is A066620.
The version with empty sets and singletons is A225520.
A version for prime indices is A304711.
The version for strict integer partitions is A305713.
The version for subsets of {1..n} is A320426 = A276187 + 1.
The version for binary indices is A326675.
The version for integer partitions is A327516.
The version for standard compositions is A333227.
The maximal case is A343652.
The case without 1's is A343653.
The case without 1's with singletons is A343654.
The maximal case without 1's is A343660.
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A100565 counts pairwise coprime unordered triples of divisors.
A325683 counts maximal Golomb rulers.
A326077 counts maximal pairwise indivisible sets.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n]],CoprimeQ@@#&]],{n,100}]
Previous Showing 21-30 of 50 results. Next