cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A051305 Number of 5-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 543, 118629, 12564636, 907001550, 51751693161, 2527016053023, 110737868741742, 4489929936371880, 171944175793168779, 6309813148166785257, 224210698542088771968
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/(120): n in [0..50]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,50, print1((32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = (1/5!)*(32^n -30*24^n +150*20^n -45*18^n +85*17^n -515*16^n -450*15^n +1365*14^n +390*13^n -1680*12^n -22*11^n +1875*10^n -1080*9^n -685*8^n +980*7^n -669*6^n +575*5^n -195*4^n -150*3^n +124*2^n -24).

A051306 Number of 6-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 300, 233821, 78501094, 15532759830, 2213672795040, 254206334062527, 25146386270836578, 2235664320306737320, 183782806231396191820, 14248056393984957136593
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(64^n - 45*48^n + 300*40^n - 135*36^n + 510*34^n - 198*33^n - 1499*32^n - 2700*30^n + 6615*28^n + 1215*27^n - 780*26^n + 3750*25^n - 6750*24^n - 8280*23^n + 3828*22^n - 12285*21^n + 19425*20^n + 31635*19^n - 30105*18^n - 34425*17^n + 24770*16^n + 13125*15^n - 3885*14^n + 390*13^n - 5670*12^n - 12485*11^n + 28575*10^n - 16560*9^n - 3435*8^n + 7868*7^n - 4995*6^n + 3800*5^n - 1301*4^n - 822*3^n + 668*2^n - 120)/6!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)

Formula

a(n) = (1/6!)*(64^n -45*48^n +300*40^n -135*36^n +510*34^n -198*33^n -1499*32^n -2700*30^n +6615*28^n +1215*27^n -780*26^n +3750*25^n -6750*24^n -8280*23^n +3828*22^n -12285*21^n +19425*20^n +31635*19^n -30105*18^n -34425*17^n +24770*16^n +13125*15^n -3885*14^n +390*13^n -5670*12^n -12485*11^n +28575*10^n -16560*9^n -3435*8^n +7868*7^n -4995*6^n +3800*5^n -1301*4^n -822*3^n +668*2^n -120).

A094034 Number of connected 3-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 1, 38, 645, 7510, 71981, 617358, 4947685, 37972070, 283229661, 2072354878, 14964711125, 107078983830, 761312910541, 5388481567598, 38017703680965, 267622831854790, 1880882526962621, 13203901505935518, 92616363612417205
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(Exp[7*x] - 6*Exp[5*x] + 3*Exp[4*x] + 14*Exp[3*x] - 21*Exp[2*x] + 11*Exp[x] - 2)/3!, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
    LinearRecurrence[{22,-190,820,-1849,2038,-840},{0,0,0,1,38,645,7510},30] (* Harvey P. Dale, Sep 20 2022 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(-x^3*(5*x+1)*(56*x^2-11*x-1)/( (x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (exp(7*x) - 6*exp(5*x) + 3*exp(4*x) + 14*exp(3*x) - 21*exp(2*x) + 11*exp(x) -2)/3!.
G.f.: -x^3*(5*x+1)*(56*x^2-11*x-1) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(7*x-1)). - Colin Barker, Nov 27 2012

A094035 Number of connected 4-element antichains on a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 20, 1655, 65305, 1794730, 40179930, 793030245, 14423331635, 248261291960, 4113063835540, 66327037011235, 1049050826515965, 16360528085273190, 252545239130514350, 3869090307434050625, 58948119057416280295, 894447719738683138420
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 22 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(Exp[15*x] - 12*Exp[11*x] + 24*Exp[9*x] - 14*Exp[7*x] + 27*Exp[6*x] - 60*Exp[5*x] - 24*Exp[4*x] + 155*Exp[3*x] - 141*Exp[2*x] + 50*Exp[x] - 6)/4!, {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0,0,0], Vec(serlaplace((exp(15*x) -12*exp(11*x) +24*exp(9*x) -14*exp(7*x) +27*exp(6*x) -60*exp(5*x) -24*exp(4*x) +155*exp(3*x) -141*exp(2*x) +50*exp(x) -6)/4!))) \\ G. C. Greubel, Oct 07 2017
    
  • PARI
    concat(vector(4), Vec(5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)) + O(x^30))) \\ Colin Barker, Oct 13 2017

Formula

E.g.f.: (exp(15*x) - 12*exp(11*x) + 24*exp(9*x) - 14*exp(7*x) + 27*exp(6*x) - 60*exp(5*x) - 24*exp(4*x) + 155*exp(3*x) - 141*exp(2*x) + 50*exp(x) - 6)/4!.
G.f.: 5*x^4*(4+79*x-988*x^2-4414*x^3+52260*x^4-8721*x^5-374220*x^6) / ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)*(1-7*x)*(1-9*x)*(1-11*x)*(1-15*x)). - Colin Barker, Oct 13 2017

A051307 Number of 7-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 135, 329205, 365924948, 205640068950, 75013516525425, 20611869786684495, 4661763066154503606, 917701003163074793520, 163180081989646991509955, 26889766005753182579964345, 4182467653250525215771670424, 622388054953695081193665509610
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Formula

a(n) = 1/7! * (128^n -63*96^n +525*80^n -315*72^n +1785*68^n -1386*66^n +455*65^n -3486*64^n -9450*60^n +21315*56^n +8505*54^n -13650*52^n -5355*51^n +36750*50^n -5145*49^n -14805*48^n -57960*46^n -4725*45^n +45738*44^n +36120*43^n -191835*42^n +43050*41^n +74725*40^n -73710*39^n +333165*38^n +104895*37^n -73395*36^n -54390*35^n -354144*34^n -423192*33^n +383621*32^n +143220*31^n -292425*30^n +753855*29^n +181545*28^n -314685*27^n -114660*26^n -916125*25^n -268716*24^n +1998493*23^n +140833*22^n -2359350*21^n +458675*20^n +2147950*19^n -961758*18^n -1428000*17^n +933380*16^n +578175*15^n -614362*14^n +143052*13^n +45990*12^n -244860*11^n +356475*10^n -199521*9^n -12244*8^n +64778*7^n -40026*6^n +28035*5^n -9604*4^n -5292*3^n +4248*2^n -720).

A056047 Number of 4-antichain covers of a labeled n-set.

Original entry on oeis.org

0, 0, 0, 0, 25, 1895, 70370, 1868650, 41062035, 802349205, 14514339340, 249104207000, 4120588431245, 66392465654515, 1049608974433110, 16365222591176550, 252584307401055655, 3869412829938587825, 58950765174112191680, 894469325684769169300, 13531152125348360663265
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 25 2000

Keywords

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A051112.

Programs

  • Magma
    [(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6)/24: n in [0..25]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(1/4!)*(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6), {n,0,25}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,25, print1((15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6)/24, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = (1/4!)*(15^n - 12*11^n + 24*9^n + 4*8^n - 18*7^n + 6*6^n - 36*5^n + 36*4^n + 11*3^n - 22*2^n + 6).
G.f.: -5*x^4*(517752*x^6 -251184*x^5 +4757*x^4 +12696*x^3 -1810*x^2 +24*x +5) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)*(9*x -1)*(11*x -1)*(15*x -1)). - Colin Barker, Jul 11 2013

Extensions

More terms from Colin Barker, Jul 11 2013

A084870 Number of 3-multiantichains of an n-set.

Original entry on oeis.org

1, 2, 6, 28, 190, 1692, 16766, 166028, 1586430, 14580412, 129654526, 1123451628, 9544185470, 79881877532, 661135445886, 5425962250828, 44250287565310, 359161631645052, 2904756409742846, 23429320590259628, 188594431902253950
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Crossrefs

Programs

  • Magma
    [(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/3!)*(8^n - 6*6^n + 6*5^n + 9*4^n - 18*3^n + 14*2^n).
G.f.: ( 1-26*x+265*x^2-1330*x^3+3340*x^4-3432*x^5 ) / ( (6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(8*x-1)*(5*x-1) ). - R. J. Mathar, Jul 08 2011

A084882 Number of (k,m,n)-multiantichains of multisets with k=3 and m=5.

Original entry on oeis.org

1, 3, 51, 4129, 1439381, 814788851, 395927618035, 155157302244381, 51960586962031617, 15663181302847575559, 4402571746033946222639, 1180812802393866826858193, 306839347397532891662028733
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Jun 10 2003

Keywords

Comments

By a (k,m,n)-multiantichain of multisets we mean an m-multiantichain of k-bounded multisets on an n-set. The elements of a multiantichain could have the multiplicities greater than 1. A multiset is called k-bounded if every its element has the multiplicity not greater than k-1.

Crossrefs

Programs

  • Mathematica
    Table[(1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 30*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 360*54^n + 720*42^n + 120*36^n - 720*31^n + 275*27^n + 180*26^n - 1650*18^n + 1650*14^n + 870*9^n - 1740*6^n + 744*3^n), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = (1/5!)*(243^n - 20*162^n + 60*126^n + 20*108^n + 10*98^n - 120*93^n - 120*84^n + 30*81^n + 30*78^n + 120*77^n + 120*70^n - 120*63^n + 20*56^n - 360*54^n + 720*42^n + 120*36^n - 720*31^n + 275*27^n + 180*26^n - 1650*18^n + 1650*14^n + 870*9^n - 1740*6^n + 744*3^n).

A037843 Number of matrices with n columns whose rows do not cover each other; ordered antichains of subsets of an n-set.

Original entry on oeis.org

2, 3, 7, 39, 2551, 22928343, 6641112790058484007
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 23 2000

Keywords

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Formula

a(n)=Sum_{k=0..C(n, floor(n/2))}k!*M(n, k) where M(n, k) is the number of distinct monotone Boolean functions of n variables with k mincuts.

A056163 Number of ordered antichains on an unlabeled n-set; labeled T_1-hypergraphs with n hyperedges.

Original entry on oeis.org

2, 3, 5, 11, 120, 191297
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 31 2000

Keywords

Comments

A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node.

Examples

			a(1)=1+2=3; a(2)=1+3+1=5; a(3)=1+4+4+2=11; a(4)=1+5+10+19+25+30+30=120; a(5)=1+6+20+90+454+2206+8340+20580+38640+60480+60480=191297.
There are 11 ordered antichains on an unlabeled 3-set: 0, (0), ({1}), ({1,2}), ({1,2,3}), ({1},{2}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}).
		

References

  • V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6)
  • V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.

Crossrefs

Cf. A000372 for (unordered) antichains on a labeled n-set, A056005, A056069-A056071, A056073, A056046-A056049, A056052, A056101, A056104, A051112-A051118.

Formula

a(n)=Sum_{k=0..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains on an unlabeled n-set.
Previous Showing 21-30 of 43 results. Next