cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A071248 a(n) = Product_{k=1..n} lcm(n,k).

Original entry on oeis.org

1, 4, 54, 768, 75000, 466560, 592950960, 5284823040, 1735643790720, 45360000000000, 1035338990313196800, 102980960177356800, 145077660657859734604800, 154452450072526199193600
Offset: 1

Views

Author

Amarnath Murthy, May 21 2002

Keywords

Comments

Log(a(n))/n/Log(n) is bounded since n^n < a(n) < n^(2n). It seems that lim n -> infinity Log(a(n))/n/Log(n) exists and = 1.7.... - Benoit Cloitre, Aug 13 2002

Crossrefs

Product of terms in n-th row of A051173.

Programs

  • Maple
    A071248 := proc(n) mul( lcm(k,n),k=1..n) ; end: for n from 1 to 10 do printf("%d ",A071248(n)) ; od ; # R. J. Mathar, Apr 03 2007
  • Mathematica
    Table[Product[LCM[k,n],{k,n}],{n,20}] (* Harvey P. Dale, Jun 12 2019 *)
  • PARI
    a(n)=prod(k=1,n,lcm(n,k))

Formula

a(n) = n!*Product_{ d divides n } d^phi(d). - Vladeta Jovovic, Sep 10 2004
a(n) = n!*n^n/A067911(n)=A000142(n)*A000312(n)/A067911(n). - R. J. Mathar, Apr 03 2007

Extensions

More terms from Benoit Cloitre, Aug 13 2002

A334231 Triangle read by rows: T(n,k) gives the join of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 6, 4, 5, 5, 15, 5, 5, 6, 6, 6, 6, 15, 6, 7, 7, 7, 7, 35, 7, 7, 8, 8, 12, 8, 10, 12, 14, 8, 9, 9, 9, 9, 45, 9, 21, 18, 9, 10, 10, 15, 10, 10, 15, 35, 10, 45, 10, 11, 11, 33, 11, 11, 33, 77, 11, 99, 11, 11, 12, 12, 12, 12, 15, 12, 14, 12
Offset: 1

Views

Author

Peter Kagey, Apr 19 2020

Keywords

Comments

The poset of the positive integers is defined by covering relations "n covers (n - n/p)" for all divisors p of n.
n appears A332809(n) times in row n.

Examples

			The interval [1,15] illustrates that, for example, T(12, 10) = T(6, 5) = 15, T(12, 4) = 12, T(8, 5) = 10, T(3, 1) = 3, etc.
      15
     _/ \_
    /     \
  10       12
  | \_   _/ |
  |   \ /   |
  5    8    6
   \_  |  _/|
     \_|_/  |
       4    3
       |  _/
       |_/
       2
       |
       |
       1
Triangle begins:
  n\k|  1  2  3  4  5  6  7  8  9 10  11 12 13 14
  ---+-------------------------------------------
   1 |  1
   2 |  2  2
   3 |  3  3  3
   4 |  4  4  6  4
   5 |  5  5 15  5  5
   6 |  6  6  6  6 15  6
   7 |  7  7  7  7 35  7  7
   8 |  8  8 12  8 10 12 14  8
   9 |  9  9  9  9 45  9 21 18  9
  10 | 10 10 15 10 10 15 35 10 45 10
  11 | 11 11 33 11 11 33 77 11 99 11  11
  12 | 12 12 12 12 15 12 14 12 18 15  33 12
  13 | 13 13 13 13 65 13 91 13 39 65 143 13 13
  14 | 14 14 14 14 35 14 14 14 21 35  77 14 91 14
		

Crossrefs

Programs

  • PARI
    \\ This just returns the least (in a normal sense) number x such that both n and k are in its set of descendants:
    up_to = 105;
    buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); }
    vdescsets = buildWdescsets(100*up_to); \\ XXX - Think about a safe limit here!
    A334231tr(n,k) = for(i=max(n,k),oo,if(setsearch(vdescsets[i],n)&&setsearch(vdescsets[i],k),return(i)));
    A334231list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334231tr(n,k))); (v); };
    v334231 = A334231list(up_to);
    A334231(n) = v334231[n]; \\ Antti Karttunen, Apr 19 2020

Formula

T(n,1) = T(n,n) = n. T(n, 2) = n for n >= 2.
T(x,y) <= lcm(x,y) for any x,y because x is in same chain with lcm(x,y), and y is in same chain with lcm(x,y).
Moreover, empirically it looks like T(x,y) divides lcm(x,y).

A339394 Sum over all partitions of n of the LCM of the number of parts and the number of distinct parts.

Original entry on oeis.org

0, 1, 3, 6, 15, 26, 43, 81, 138, 218, 320, 514, 751, 1131, 1570, 2319, 3159, 4457, 6077, 8344, 11224, 15337, 20297, 26908, 35773, 46434, 60711, 78433, 100987, 129222, 166590, 209719, 267120, 335842, 423341, 527739, 659974, 816805, 1015990, 1251686, 1543864
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, d) option remember; `if`(n=0, ilcm(p, d),
          add(b(n-i*j, i-1, p+j, d+signum(j)), j=`if`(i>1, 0..n/i, n)))
        end:
    a:= n-> b(n$2, 0$2):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, p_, d_] := b[n, i, p, d] = If[n == 0, LCM[p, d],
         Sum[b[n - i*j, i - 1, p + j, d + Sign[j]],
         {j, If[i > 1, Range[0, n/i], {n}]}]];
    a[n_] := b[n, n, 0, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, Mar 09 2021, after Alois P. Heinz *)

A242224 Triangular array T read by rows, T(n, k) = n*k*(gcd(n,k)+2)/gcd(n,k)^2.

Original entry on oeis.org

3, 6, 4, 9, 18, 5, 12, 8, 36, 6, 15, 30, 45, 60, 7, 18, 12, 10, 24, 90, 8, 21, 42, 63, 84, 105, 126, 9, 24, 16, 72, 12, 120, 48, 168, 10, 27, 54, 15, 108, 135, 30, 189, 216, 11, 30, 20, 90, 40, 14, 60, 210, 80, 270, 12, 33, 66, 99, 132, 165, 198, 231, 264, 297, 330, 13
Offset: 1

Views

Author

Michel Marcus, May 08 2014

Keywords

Comments

Described in the CNRS link as a puzzle where op(n,k) is defined by: op(n,n)=n+2, op(n,k)=op(k,n) and op(n,n+k)/op(n,k)=(n+k)/k.
If gcd(n,k)+2 is replaced by gcd(n,k), then triangle A051173 is obtained.

Examples

			Triangle begins:
   3;
   6,  4;
   9, 18,  5;
  12,  8, 36,  6;
  15, 30, 45, 60,  7;
  18, 12, 10, 24, 90,  8;
  ...
		

Programs

  • Mathematica
    t[n_, k_] := n*k*(GCD[n, k] +2)/GCD[n, k]^2; Table[ t[n, k], {n, 12}, {k, n}] // Flatten (* Robert G. Wilson v, Jan 21 2018 *)
  • PARI
    tabl(nn) = {for (n=1, nn, for (k=1, n, print1(n*k*(gcd(n,k)+2)/gcd(n,k)^2, ", ");); print(););}

A338797 Triangle read by rows: T(n,k) is the least m such that there exist positive integers x, y and z satisfying x/n + y/k = z/m where all fractions are reduced; 1 <= k <= n.

Original entry on oeis.org

1, 2, 1, 3, 6, 1, 4, 4, 12, 1, 5, 10, 15, 20, 1, 6, 3, 2, 12, 30, 1, 7, 14, 21, 28, 35, 42, 1, 8, 8, 24, 8, 40, 24, 56, 1, 9, 18, 9, 36, 45, 18, 63, 72, 1, 10, 5, 30, 20, 2, 15, 70, 40, 90, 1, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1
Offset: 1

Views

Author

Peter Kagey, Nov 09 2020

Keywords

Examples

			Table begins:
  n\k|  1   2   3   4   5   6   7   8   9  10   11 12
  ---+-----------------------------------------------
   1 |  1,
   2 |  2,  1,
   3 |  3,  6,  1,
   4 |  4,  4, 12,  1,
   5 |  5, 10, 15, 20,  1,
   6 |  6,  3,  2, 12, 30,  1,
   7 |  7, 14, 21, 28, 35, 42,  1,
   8 |  8,  8, 24,  8, 40, 24, 56,  1,
   9 |  9, 18,  9, 36, 45, 18, 63, 72,  1,
  10 | 10,  5, 30, 20,  2, 15, 70, 40, 90,   1,
  11 | 11, 22, 33, 44, 55, 66, 77, 88, 99, 110,  1,
  12 | 12, 12,  4,  3, 60,  4, 84, 24, 36, 60, 132, 1.
T(20,10) = 4 because 1/20 + 7/10 = 3/4, and there is no choice of numerators on the left that results in a smaller denominator on the right.
		

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    farey n = [k % n | k <- [1..n], gcd n k == 1]
    a338797T n k = minimum [denominator $ a + b | a <- farey n, b <- farey k]

Formula

A051537(n,k) <= T(n,k) <= A221918(n,k) <= lcm(n,k) = A051173(n,k).
T(n,k) = lcm(n,k) when gcd(n,k) = 1.

A374352 a(n) = [n>1] * a(n-1) + Sum_{d|n} phi(lcm(d,n/d)) where [] is an Iverson bracket.

Original entry on oeis.org

1, 3, 7, 12, 20, 28, 40, 52, 66, 82, 102, 122, 146, 170, 202, 228, 260, 288, 324, 364, 412, 452, 496, 544, 588, 636, 684, 744, 800, 864, 924, 980, 1060, 1124, 1220, 1290, 1362, 1434, 1530, 1626, 1706, 1802, 1886, 1986, 2098, 2186, 2278, 2382, 2472, 2560, 2688
Offset: 1

Views

Author

Alois P. Heinz, Jul 05 2024

Keywords

Comments

Sum over all positive integers k, m with k*m <= n of phi(lcm(k,m)).

Crossrefs

Partial sums of A061884.

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory; `if`(n<1, 0,
          a(n-1)+add(phi(ilcm(d, n/d)), d=divisors(n)))
        end:
    seq(a(n), n=1..66);

Formula

a(n) = Sum_{j=1..n} Sum_{d|j} phi(lcm(d,j/d)).
a(n) = Sum_{j=1..n} A061884(j).

A174554 Smallest k > 2 such that 2|k, 3|k+1, 4|k+2,..., n|k+n-2.

Original entry on oeis.org

4, 8, 14, 62, 62, 422, 842, 2522, 2522, 27722, 27722, 360362, 360362, 360362, 720722, 12252242, 12252242, 232792562, 232792562, 232792562, 232792562, 5354228882, 5354228882, 26771144402, 26771144402, 80313433202, 80313433202
Offset: 2

Views

Author

Michel Lagneau, Mar 22 2010

Keywords

Comments

We solve the system of n+1 equations : k==2 (mod 2), k==2 (mod 3),...,k==2 (mod n), and then the solutions are k== 2 mod (lcm(2,3,4,...,n)) where lcm(k) is the least common multiple of{1, 2, ..., k}(A003418) .

Examples

			a(2) = 4 because 2|4;
a(3) = 8 because 2|8 and 3|9;
a(4) = 14 because 2|14, 3|15 and 4|16;
a(5) = 62 because 2|62, 3|63, 4|64 and 5|65;
a(6) = 62 because 2|62, 3|63, 4|64, 5|65 and 6|66.
		

Crossrefs

Programs

  • Maple
    with(numtheory):q:=2:for k from 2 to 100 do :q1:= lcm(q,k):q2 :=2+q1 :print(q2): q :=q1 :od :

Formula

a(n) = 2 + lcm(2,3,4,...,n) = A003418(n) + 2.
Previous Showing 11-17 of 17 results.