A071248
a(n) = Product_{k=1..n} lcm(n,k).
Original entry on oeis.org
1, 4, 54, 768, 75000, 466560, 592950960, 5284823040, 1735643790720, 45360000000000, 1035338990313196800, 102980960177356800, 145077660657859734604800, 154452450072526199193600
Offset: 1
Product of terms in n-th row of
A051173.
-
A071248 := proc(n) mul( lcm(k,n),k=1..n) ; end: for n from 1 to 10 do printf("%d ",A071248(n)) ; od ; # R. J. Mathar, Apr 03 2007
-
Table[Product[LCM[k,n],{k,n}],{n,20}] (* Harvey P. Dale, Jun 12 2019 *)
-
a(n)=prod(k=1,n,lcm(n,k))
A334231
Triangle read by rows: T(n,k) gives the join of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n.
Original entry on oeis.org
1, 2, 2, 3, 3, 3, 4, 4, 6, 4, 5, 5, 15, 5, 5, 6, 6, 6, 6, 15, 6, 7, 7, 7, 7, 35, 7, 7, 8, 8, 12, 8, 10, 12, 14, 8, 9, 9, 9, 9, 45, 9, 21, 18, 9, 10, 10, 15, 10, 10, 15, 35, 10, 45, 10, 11, 11, 33, 11, 11, 33, 77, 11, 99, 11, 11, 12, 12, 12, 12, 15, 12, 14, 12
Offset: 1
The interval [1,15] illustrates that, for example, T(12, 10) = T(6, 5) = 15, T(12, 4) = 12, T(8, 5) = 10, T(3, 1) = 3, etc.
15
_/ \_
/ \
10 12
| \_ _/ |
| \ / |
5 8 6
\_ | _/|
\_|_/ |
4 3
| _/
|_/
2
|
|
1
Triangle begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
---+-------------------------------------------
1 | 1
2 | 2 2
3 | 3 3 3
4 | 4 4 6 4
5 | 5 5 15 5 5
6 | 6 6 6 6 15 6
7 | 7 7 7 7 35 7 7
8 | 8 8 12 8 10 12 14 8
9 | 9 9 9 9 45 9 21 18 9
10 | 10 10 15 10 10 15 35 10 45 10
11 | 11 11 33 11 11 33 77 11 99 11 11
12 | 12 12 12 12 15 12 14 12 18 15 33 12
13 | 13 13 13 13 65 13 91 13 39 65 143 13 13
14 | 14 14 14 14 35 14 14 14 21 35 77 14 91 14
-
\\ This just returns the least (in a normal sense) number x such that both n and k are in its set of descendants:
up_to = 105;
buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); }
vdescsets = buildWdescsets(100*up_to); \\ XXX - Think about a safe limit here!
A334231tr(n,k) = for(i=max(n,k),oo,if(setsearch(vdescsets[i],n)&&setsearch(vdescsets[i],k),return(i)));
A334231list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334231tr(n,k))); (v); };
v334231 = A334231list(up_to);
A334231(n) = v334231[n]; \\ Antti Karttunen, Apr 19 2020
A339394
Sum over all partitions of n of the LCM of the number of parts and the number of distinct parts.
Original entry on oeis.org
0, 1, 3, 6, 15, 26, 43, 81, 138, 218, 320, 514, 751, 1131, 1570, 2319, 3159, 4457, 6077, 8344, 11224, 15337, 20297, 26908, 35773, 46434, 60711, 78433, 100987, 129222, 166590, 209719, 267120, 335842, 423341, 527739, 659974, 816805, 1015990, 1251686, 1543864
Offset: 0
-
b:= proc(n, i, p, d) option remember; `if`(n=0, ilcm(p, d),
add(b(n-i*j, i-1, p+j, d+signum(j)), j=`if`(i>1, 0..n/i, n)))
end:
a:= n-> b(n$2, 0$2):
seq(a(n), n=0..50);
-
b[n_, i_, p_, d_] := b[n, i, p, d] = If[n == 0, LCM[p, d],
Sum[b[n - i*j, i - 1, p + j, d + Sign[j]],
{j, If[i > 1, Range[0, n/i], {n}]}]];
a[n_] := b[n, n, 0, 0];
a /@ Range[0, 50] (* Jean-François Alcover, Mar 09 2021, after Alois P. Heinz *)
A242224
Triangular array T read by rows, T(n, k) = n*k*(gcd(n,k)+2)/gcd(n,k)^2.
Original entry on oeis.org
3, 6, 4, 9, 18, 5, 12, 8, 36, 6, 15, 30, 45, 60, 7, 18, 12, 10, 24, 90, 8, 21, 42, 63, 84, 105, 126, 9, 24, 16, 72, 12, 120, 48, 168, 10, 27, 54, 15, 108, 135, 30, 189, 216, 11, 30, 20, 90, 40, 14, 60, 210, 80, 270, 12, 33, 66, 99, 132, 165, 198, 231, 264, 297, 330, 13
Offset: 1
Triangle begins:
3;
6, 4;
9, 18, 5;
12, 8, 36, 6;
15, 30, 45, 60, 7;
18, 12, 10, 24, 90, 8;
...
- Indranil Ghosh, Rows 1..100 of triangle, flattened
- Ana Rechtman, Mai, 1er défi, Images des Mathématiques, CNRS, 2014 (in French).
- See also Comments, Images des Mathématiques, CNRS, 2014.
-
t[n_, k_] := n*k*(GCD[n, k] +2)/GCD[n, k]^2; Table[ t[n, k], {n, 12}, {k, n}] // Flatten (* Robert G. Wilson v, Jan 21 2018 *)
-
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(n*k*(gcd(n,k)+2)/gcd(n,k)^2, ", ");); print(););}
A338797
Triangle read by rows: T(n,k) is the least m such that there exist positive integers x, y and z satisfying x/n + y/k = z/m where all fractions are reduced; 1 <= k <= n.
Original entry on oeis.org
1, 2, 1, 3, 6, 1, 4, 4, 12, 1, 5, 10, 15, 20, 1, 6, 3, 2, 12, 30, 1, 7, 14, 21, 28, 35, 42, 1, 8, 8, 24, 8, 40, 24, 56, 1, 9, 18, 9, 36, 45, 18, 63, 72, 1, 10, 5, 30, 20, 2, 15, 70, 40, 90, 1, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1
Offset: 1
Table begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11 12
---+-----------------------------------------------
1 | 1,
2 | 2, 1,
3 | 3, 6, 1,
4 | 4, 4, 12, 1,
5 | 5, 10, 15, 20, 1,
6 | 6, 3, 2, 12, 30, 1,
7 | 7, 14, 21, 28, 35, 42, 1,
8 | 8, 8, 24, 8, 40, 24, 56, 1,
9 | 9, 18, 9, 36, 45, 18, 63, 72, 1,
10 | 10, 5, 30, 20, 2, 15, 70, 40, 90, 1,
11 | 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1,
12 | 12, 12, 4, 3, 60, 4, 84, 24, 36, 60, 132, 1.
T(20,10) = 4 because 1/20 + 7/10 = 3/4, and there is no choice of numerators on the left that results in a smaller denominator on the right.
-
import Data.Ratio ((%), denominator)
farey n = [k % n | k <- [1..n], gcd n k == 1]
a338797T n k = minimum [denominator $ a + b | a <- farey n, b <- farey k]
A374352
a(n) = [n>1] * a(n-1) + Sum_{d|n} phi(lcm(d,n/d)) where [] is an Iverson bracket.
Original entry on oeis.org
1, 3, 7, 12, 20, 28, 40, 52, 66, 82, 102, 122, 146, 170, 202, 228, 260, 288, 324, 364, 412, 452, 496, 544, 588, 636, 684, 744, 800, 864, 924, 980, 1060, 1124, 1220, 1290, 1362, 1434, 1530, 1626, 1706, 1802, 1886, 1986, 2098, 2186, 2278, 2382, 2472, 2560, 2688
Offset: 1
-
a:= proc(n) option remember; uses numtheory; `if`(n<1, 0,
a(n-1)+add(phi(ilcm(d, n/d)), d=divisors(n)))
end:
seq(a(n), n=1..66);
A174554
Smallest k > 2 such that 2|k, 3|k+1, 4|k+2,..., n|k+n-2.
Original entry on oeis.org
4, 8, 14, 62, 62, 422, 842, 2522, 2522, 27722, 27722, 360362, 360362, 360362, 720722, 12252242, 12252242, 232792562, 232792562, 232792562, 232792562, 5354228882, 5354228882, 26771144402, 26771144402, 80313433202, 80313433202
Offset: 2
a(2) = 4 because 2|4;
a(3) = 8 because 2|8 and 3|9;
a(4) = 14 because 2|14, 3|15 and 4|16;
a(5) = 62 because 2|62, 3|63, 4|64 and 5|65;
a(6) = 62 because 2|62, 3|63, 4|64, 5|65 and 6|66.
Comments