cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A377153 a(n) = Sum_{k=0..n} binomial(k+5,5) * binomial(k,n-k)^2.

Original entry on oeis.org

1, 6, 27, 140, 651, 2772, 11354, 44640, 169371, 624742, 2248575, 7922124, 27397937, 93214632, 312559200, 1034507696, 3384194616, 10954244952, 35118346760, 111602517096, 351819819414, 1100912299156, 3421515852834, 10566654790176, 32441857824859, 99060134392422
Offset: 0

Views

Author

Seiichi Manyama, Oct 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k+5, 5)*binomial(k, n-k)^2);
    
  • PARI
    a089627(n, k) = n!/((n-2*k)!*k!^2);
    my(N=5, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))

Formula

G.f.: (Sum_{k=0..2} A089627(5,k) * (1-x-x^2)^(5-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^(11/2).

A377158 a(n) = Sum_{k=0..n} binomial(k+6,6) * binomial(k,n-k)^2.

Original entry on oeis.org

1, 7, 35, 196, 994, 4578, 20118, 84540, 341397, 1335103, 5078227, 18852428, 68519920, 244413820, 857393700, 2963013816, 10102413972, 34025396580, 113329367816, 373642488044, 1220412680410, 3951964394642, 12695738508950, 40484919514284, 128216539026261
Offset: 0

Views

Author

Seiichi Manyama, Oct 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k+6, 6)*binomial(k, n-k)^2);
    
  • PARI
    a089627(n, k) = n!/((n-2*k)!*k!^2);
    my(N=6, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))

Formula

G.f.: (Sum_{k=0..3} A089627(6,k) * (1-x-x^2)^(6-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^(13/2).

A377159 a(n) = Sum_{k=0..n} binomial(k+7,7) * binomial(k,n-k)^2.

Original entry on oeis.org

1, 8, 44, 264, 1446, 7152, 33516, 149688, 640233, 2642992, 10582220, 41249000, 157050660, 585621960, 2143442400, 7715164176, 27353809188, 95660348904, 330377130644, 1127996393656, 3810881349814, 12750188169312, 42276102419916, 139008143200536, 453526927536969
Offset: 0

Views

Author

Seiichi Manyama, Oct 18 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k+7, 7)*binomial(k, n-k)^2);
    
  • PARI
    a089627(n, k) = n!/((n-2*k)!*k!^2);
    my(N=7, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))

Formula

G.f.: (Sum_{k=0..3} A089627(7,k) * (1-x-x^2)^(7-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^(15/2).

A181547 a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)^5.

Original entry on oeis.org

1, 1, 2, 33, 245, 1268, 10903, 108801, 876184, 7319995, 70550669, 663827604, 6051592703, 57695451167, 563736086740, 5452227384417, 53094611797387, 525962074892014, 5232943624317191, 52145361057635835, 523458523860890906
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2010

Keywords

Comments

Conjecture: Given F(n,L) = Sum_{k=0..[n/2]} C(n-k,k)^L, then lim_{n->oo} F(n+1,L)/F(n,L) = (Fibonacci(L)*sqrt(5) + Lucas(L))/2 for L>=0 where Fibonacci(n) = A000045(n) and Lucas(n) = A000032(n).
For this sequence (L=5): lim_{n->oo} a(n+1)/a(n) = (5*sqrt(5)+11)/2 = 11.090...
Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z)*(1 - u)*(1 - v) - (x*y*z*u*v)^2). - Ilya Gutkovskiy, Apr 23 2025

Examples

			G.f. A(x) = 1 + x + 2*x^2 + 33*x^3 + 245*x^4 + 1268*x^5 + 10903*x^6 +...
The terms begin:
a(0) = a(1) = 1^5;
a(2) = 1^5 + 1^5 = 2;
a(3) = 1^5 + 2^5 = 33;
a(4) = 1^5 + 3^5 + 1^5 = 245;
a(5) = 1^5 + 4^5 + 3^5 = 1268;
a(6) = 1^5 + 5^5 + 6^5 + 1^5 = 10903;
a(7) = 1^5 + 6^5 + 10^5 + 4^5 = 108801; ...
		

Crossrefs

Cf. variants: A181545, A181546, A051286.

Programs

  • PARI
    {a(n)=sum(k=0,n\2,binomial(n-k,k)^5)}

A188648 Binomial sums a(n) = Sum_{k=0..n} (binomial(2n-k,k))^2.

Original entry on oeis.org

1, 2, 11, 63, 376, 2317, 14545, 92512, 594169, 3844787, 25027296, 163701327, 1075049011, 7083830648, 46812088751, 310118453573, 2058919125662, 13695571200353, 91254952276859, 608960974528058, 4069232436916151
Offset: 0

Views

Author

Emanuele Munarini, Apr 07 2011

Keywords

Comments

Central coefficients of A172991.
Bisection of A051286 (Whitney number of level n of the lattice of the ideals of the fence of order 2n). - Paul D. Hanna, Apr 07 2011

Crossrefs

Sum_{k=0..n} (binomial(2n-k,k))^b: A122367(n) = A001519(n+1) (b=1), this sequence (b=2).

Programs

  • Mathematica
    Table[Sum[Binomial[2n-k,k]^2,{k,0,n}],{n,0,20}]
    Table[DifferenceRoot[Function[{y, m}, {4 (-m + n)^2 (-1 - 2 m + 2 n)^2 y[m] + (-5 m^2 - 18 m^3 - 17 m^4 + 12 m n + 56 m^2 n + 68 m^3 n - 8 n^2 - 56 m n^2 - 100 m^2 n^2 + 16 n^3 + 64 m n^3 - 16 n^4) y[1 + m] + (1 + m)^2 (-m + 2 n)^2 y[2 + m] == 0, y[0] == 0, y[1] == 1}]][n + 1], {n, 0, 20}] (* Benedict W. J. Irwin, Nov 03 2016 *)
  • Maxima
    makelist(sum(binomial(2*n-k,k)^2,k,0,n),n,0,20);
    
  • PARI
    {a(n) = sum(k=0, n, binomial(2*n-k, k)^2)} \\ Seiichi Manyama, Jan 13 2019

Formula

G.f.: 1/2*(1/sqrt(1-2*sqrt(x)-x-2*x*sqrt(x)+x^2) + 1/sqrt(1+2*sqrt(x)-x+2*x*sqrt(x)+x^2)).
Recurrence: (n-2)*n*(2*n - 1)*(48*n^2 - 192*n + 169)*a(n) = (576*n^5 - 4032*n^4 + 10212*n^3 - 11414*n^2 + 5457*n - 849)*a(n-1) + 5*(2*n - 3)*(48*n^4 - 288*n^3 + 565*n^2 - 399*n + 64)*a(n-2) + (576*n^5 - 4608*n^4 + 13668*n^3 - 18286*n^2 + 10521*n - 1896)*a(n-3) - (n-3)*(n-1)*(2*n - 5)*(48*n^2 - 96*n + 25)*a(n-4). - Vaclav Kotesovec, Mar 02 2014
a(n) ~ phi^(4*n + 2) / (2^(3/2) * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Mar 02 2014, simplified Jan 13 2019
Conjecture: a(n) = hypergeom([-n,-n,n+1,n+1], [1/2,1/2,1], 1/16). - Velin Yanev, Oct 31 2019
a(n) = A051286(2*n). - Mark van Hoeij, Sep 05 2022

A051291 Whitney number of level n of the lattice of the ideals of the fence of order 2 n + 1.

Original entry on oeis.org

1, 2, 3, 7, 17, 40, 97, 238, 587, 1458, 3640, 9124, 22951, 57904, 146461, 371281, 943045, 2399460, 6114555, 15603339, 39866932, 101976512, 261117378, 669239402, 1716737267, 4407306170, 11323050897, 29110603423, 74888578067
Offset: 0

Views

Author

Keywords

Comments

This is the second kind of Whitney numbers, which count elements, not to be confused with the first kind, which sum Mobius functions. - Thomas Zaslavsky, May 07 2008

Examples

			a(2) = 3 because the ideals of size 2 of the fence F(5) = { x1 < x2 > x3 < x4 > x5 } are x1x2, x1x3, x2x3.
		

References

  • E. Munarini, N. Zagaglia Salvi, On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Formula

G.f.: function = (1+2*t^2-t^3-(1-t)*sqrt(1-2*t-t^2-2*t^3+t^4))/(2*t*sqrt(1-2*t-t^2-2*t^3+t^4))

A182878 Triangle read by rows: T(n,k) is the number of lattice paths L_n of weight n having length k (0 <= k <= n). These are paths that start at (0,0) and end on the horizontal axis and whose steps are of the following four kinds: a (1,0)-step with weight 1, a (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 1, 9, 1, 0, 0, 0, 9, 16, 1, 0, 0, 0, 1, 36, 25, 1, 0, 0, 0, 0, 16, 100, 36, 1, 0, 0, 0, 0, 1, 100, 225, 49, 1, 0, 0, 0, 0, 0, 25, 400, 441, 64, 1, 0, 0, 0, 0, 0, 1, 225, 1225, 784, 81, 1, 0, 0, 0, 0, 0, 0, 36, 1225, 3136, 1296, 100, 1, 0, 0, 0, 0, 0, 0, 1, 441, 4900, 7056, 2025, 121, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 10 2010

Keywords

Comments

The weight of a path is the sum of the weights of its steps.
Sum of entries in row n is A051286(n).
Sum_{k=0..n} k*T(n,k) = A182879(n).

Examples

			Denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are hhh, hH, Hh, ud, and du, having lengths 3, 2, 2, 2, and 2, respectively.
Triangle starts:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  4,  1;
  0,  0,  1,  9,  1;
  0,  0,  0,  9, 16,  1;
		

References

  • M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
  • E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.

Crossrefs

Programs

  • Maple
    T:=(n,k)->binomial(k,n-k)^2: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

Formula

T(n,k) = binomial(n,n-k)^2.
G.f. = G(t,z) = ((1-t*z)^2 - 2*t*z^2 - 2*t^2*z^3 + t^2*z^4)^(-1/2).

Extensions

Keyword tabl added by Michel Marcus, Apr 09 2013

A110198 Antidiagonal sums of number triangle A110197.

Original entry on oeis.org

1, 2, 4, 9, 20, 46, 109, 262, 638, 1569, 3886, 9680, 24225, 60856, 153368, 387573, 981742, 2491934, 6336721, 16139616, 41166912, 105139773, 268841100, 688157430, 1763206441, 4521749642, 11605580290, 29809644693, 76621733444, 197074591420, 507193044993
Offset: 0

Views

Author

Paul Barry, Jul 15 2005

Keywords

Comments

Partial sums of A051286.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

G.f.: 1/((1-x)*sqrt((1+x+x^2)*(1-3x+x^2))); a(n) = sum{k=0..floor(n/2), sum{i=0..n-2k, binomial(i+k, k)^2}}.
a(n) = sum{i=0..2n, A202411(i)}. - Peter Luschny, Jan 16 2012
Conjecture: n*a(n) +(-3*n+1)*a(n-1) +n*a(n-2) +(-n+2)*a(n-3) +(3*n-5)*a(n-4) +(-n+2)*a(n-5)=0. - R. J. Mathar, Nov 15 2012
a(n) ~ sqrt(100+45*sqrt(5)) * ((sqrt(5)+3)/2)^n / (10*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 08 2014
Equivalently, a(n) ~ phi^(2*n + 3) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021

A180717 G.f.: Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k]^2 * x^n.

Original entry on oeis.org

1, 1, 3, 10, 37, 140, 544, 2181, 8873, 36647, 152950, 644313, 2734648, 11681428, 50173541, 216532005, 938383331, 4081653710, 17811999929, 77957939080, 342099306436, 1504801777973, 6633574235109, 29300516237855
Offset: 0

Views

Author

Paul D. Hanna, Sep 29 2010

Keywords

Comments

Compare g.f. to a g.f. of the Whitney numbers (A051286):
. Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k] * x^n.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 140*x^5 + 544*x^6 +...
equals the sum of the series:
A(x) = 1 + (1 + x)^2*x + (1 + 4*x + x^2)^2*x^2
+ (1 + 9*x + 9*x^2 + x^3)^2*x^3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^2*x^4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^2*x^5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^2*x^6 +...
		

Crossrefs

Cf. A180718.

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,sum(k=0,m,binomial(m,k)^2*x^k)^2*x^m)+x*O(x^n),n)}

Formula

a(n) ~ c * d^n / (Pi*n), where d = 1/3*(5 + (187/2 - (9*sqrt(93))/2)^(1/3) + (1/2*(187 + 9*sqrt(93)))^(1/3)) = 4.61347026758155538... is the root of the equation 1 - 2*d + 5*d^2 - d^3 = 0, c = 1/192*(80 + (382976 - 18432*sqrt(93))^(1/3) + 8*2^(2/3)*(187 + 9*sqrt(93))^(1/3)) = 1.15336756689... is the root of the equation 64*c^3 - 80*c^2 + 8*c - 1 = 0. - Vaclav Kotesovec, Jul 31 2014

A182896 Triangle read by rows: T(n,k) is the number of weighted lattice paths in L_n having k (1,-1)-returns to the horizontal axis. The members of L_n are paths of weight n that start at (0,0), end on the horizontal axis and whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

Original entry on oeis.org

1, 1, 2, 4, 1, 8, 3, 17, 9, 37, 25, 1, 82, 66, 5, 185, 171, 20, 423, 437, 70, 1, 978, 1107, 225, 7, 2283, 2790, 686, 35, 5373, 7009, 2015, 147, 1, 12735, 17574, 5760, 553, 9, 30372, 44019, 16135, 1932, 54, 72832, 110210, 44500, 6398, 264, 1, 175502, 275925, 121247, 20350, 1134, 11
Offset: 0

Views

Author

Emeric Deutsch, Dec 12 2010

Keywords

Examples

			T(3,1)=1. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; exactly one of them, namely ud, has one (1,-1)-return to the horizontal axis.
Triangle starts:
   1;
   1;
   2;
   4,  1;
   8,  3;
  17,  9;
  37, 25, 1;
  82, 66, 5;
  ...
		

Crossrefs

Programs

  • Maple
    eq := c = 1+z*c+z^2*c+z^3*c^2: c := RootOf(eq, c): G := 1/(1-z-z^2-t*z^3*c-z^3*c): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do; for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do: #yields sequence in triangular form
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(1/(1-x-x^2 - (1+y)*(1-x-x^2 - sqrt(1+x^4-2*x^3-x^2-2*x+O(x*x^n)))/2))]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 05 2019

Formula

G.f.: G(t,z) = 1/(1-z-z^2-(1+t)z^3*c), where c satisfies c = 1 + zc + z^2*c + z^3*c^2.
Sum of entries in row n is A051286(n).
T(n,0) = A004148(n+1) (the secondary structure numbers).
Sum_{k=0..n} k*T(n,k) = A182897(n).

Extensions

Data corrected by Andrew Howroyd, Nov 05 2019
Previous Showing 21-30 of 52 results. Next