cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A330916 Sum of the largest side lengths of all Heronian triangles with perimeter A051518(n).

Original entry on oeis.org

5, 6, 8, 10, 13, 27, 61, 17, 35, 20, 59, 41, 96, 25, 80, 139, 30, 26, 57, 157, 37, 37, 140, 296, 40, 196, 207, 250, 209, 91, 587, 52, 294, 51, 267, 214, 498, 50, 539, 117, 310, 697, 530, 147, 206, 342, 503, 856, 73, 744, 75, 68, 85, 550, 793, 256, 172, 155, 1270, 1202
Offset: 1

Views

Author

Wesley Ivan Hurt, May 02 2020

Keywords

Examples

			a(1) = 5; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its largest side length is 5.
a(6) = 27; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum is 15 + 12 = 27.
		

Crossrefs

Formula

a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * (c(n)-i-k), where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - Wesley Ivan Hurt, May 12 2020

A070139 Number of isosceles integer triangles with perimeter n having integral area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051516(n) - A024153(n).

Crossrefs

A070209 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer inradius.

Original entry on oeis.org

17, 116, 212, 269, 368, 370, 493, 561, 587, 659, 850, 1204, 1297, 1582, 1599, 1629, 1920, 1988, 2115, 2352, 2555, 2574, 2774, 2778, 3251, 3473, 3746, 3751, 4286, 4298, 4307, 4313, 4319, 4330, 4370, 4406, 5008, 5251
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], for s = A070083(212)/2 = (5+12+13)/2 = 15: inradius = sqrt((s-5)*(s-12)*(s-13)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; therefore A070200(212)=2. [Corrected by _Rick L. Shepherd_, May 15 2008]
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A070140 Number of acute integer triangles with perimeter n having integral area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051516(n) - A070141(n) - A024155(n).

Crossrefs

A330921 Sum of the areas of all Heronian triangles with perimeter A051518(n).

Original entry on oeis.org

6, 12, 12, 24, 30, 72, 198, 60, 126, 66, 288, 180, 360, 84, 330, 648, 132, 204, 420, 876, 114, 156, 840, 1764, 264, 1350, 1632, 2016, 1830, 624, 3816, 330, 2604, 456, 2280, 2352, 4800, 780, 4422, 1224, 2940, 7068, 5430, 912, 2310, 3744, 5520, 9144, 984, 8736, 1020
Offset: 1

Views

Author

Wesley Ivan Hurt, May 02 2020

Keywords

Examples

			a(1) = 6; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its area is 3*4/2 = 6.
a(6) = 72; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum of their areas 24 + 48 = 72.
		

Crossrefs

Formula

a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k))), where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - Wesley Ivan Hurt, May 12 2020

A334665 Perimeters of Heronian triangles with mutually distinct side lengths.

Original entry on oeis.org

12, 24, 30, 32, 36, 40, 42, 44, 48, 54, 56, 60, 64, 66, 68, 70, 72, 76, 78, 80, 84, 88, 90, 96, 98, 100, 104, 108, 110, 112, 114, 120, 126, 128, 130, 132, 136, 140, 144, 150, 152, 154, 156, 160, 162, 164, 168, 170, 172, 174, 176, 180, 182, 186, 190, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Wesley Ivan Hurt, May 07 2020

Keywords

Examples

			a(1) = 12; there is one Heronian triangle with perimeter 12 such that all side lengths are mutually distinct, [3,4,5].
a(4) = 32; there is one Heronian triangle with perimeter 32 such that all side lengths are mutually distinct, [4,13,15].
		

Crossrefs

A385736 a(n) is the number of distinct nondegenerate triangles with perimeter n whose side lengths are triangular numbers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 2, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Felix Huber, Jul 16 2025

Keywords

Comments

0, 1, 6, 10, 28, 55 are the only triangular numbers <= 10^6 that are not perimeters of triangles whose side lengths are triangular numbers. Conjecture: There are no other triangular numbers that have this property.

Examples

			The a(31) = 2 distinct nondegenerate triangles with perimeter 31 and whose side lengths are triangular numbers are [1, 15, 15] and [6, 10, 15].
		

Crossrefs

Programs

  • Maple
    A385736:=proc(N) # To get the first N + 1 terms.
        local p,x,y,z,i;
        p:=[];
        for z to floor((sqrt(24*N+9)-3)/6) do
            for x from z to floor((sqrt(4*N-3)-1)/2) do
                for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*N-x^2-x-z^2-z))-1)/2)) do
                    p:=[op(p),z*(z+1)/2+y*(y+1)/2+x*(x+1)/2]
                od
            od
        od;
        return seq(numboccur(p,i),i=0..N)
    end proc;
    A385736(87);

Formula

Trivial upper bound: a(n) <= A005044(n).
a(A385737(n)) >= 1.

A070141 Number of obtuse integer triangles with perimeter n having integral area.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 1, 0, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051516(n) - A070140(n) - A024155(n).

Crossrefs

A331366 Number of Heronian triangles with mutually distinct side lengths and perimeter A334665(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 1, 2, 3, 1, 1, 3, 8, 1, 4, 4, 3, 1, 2, 10, 1, 5, 1, 5, 3, 6, 1, 9, 2, 5, 6, 6, 2, 3, 5, 6, 8, 1, 10, 1, 1, 1, 6, 8, 3, 2, 2, 12, 8, 4, 6, 5, 4, 11, 14, 5, 1, 11, 7, 3, 1, 6, 1, 2, 14, 11, 1, 9, 14, 11, 1, 4, 11, 3, 1, 11, 4, 2, 7, 4, 12
Offset: 1

Views

Author

Wesley Ivan Hurt, May 07 2020

Keywords

Examples

			a(1) = 1; there is one Heronian triangle with perimeter A334665(1) = 12 such that all side lengths are mutually distinct, [3,4,5].
a(4) = 1; there is one Heronian triangle with perimeter A334665(4) = 32 such that all side lengths are mutually distinct, [4,13,15].
		

Crossrefs

A385737 Perimeters of nondegenerate triangles with integer areas, whose side lengths are triangular numbers.

Original entry on oeis.org

176, 224, 264, 336, 504, 644, 756, 950, 1196, 1232, 1280, 1500, 1566, 1650, 1700, 2100, 2112, 2250, 2366, 2754, 3036, 3306, 5676, 5796, 7296, 8064, 8316, 8526, 9576, 10206, 10260, 12474, 13200, 15872, 16236, 16896, 17094, 17150, 20172, 21714, 21726, 22382, 22644
Offset: 1

Views

Author

Felix Huber, Jul 16 2025

Keywords

Comments

224 and 1280 are the only perimeters <= 10^6 of nondegenerate triangles whose side lengths (28, 91, 105 or 325, 325, 630, respectively) and areas (1176 or 25200, respectively) are triangular numbers.

Examples

			176 is a term because it is the perimeter of the triangle [55, 55, 66], where 55 and 66 are triangular numbers, which has an integer area of sqrt(88*(88 - 55)*(88 - 55)*(88 - 66)) = 1452.
224 is a term because it is the perimeter of the triangle [28, 91, 105], where 28, 91 and 105 are triangular numbers, which has an integer area of sqrt(112*(112 - 28)*(112 - 91)*(112 - 105)) = 1176 (which is also a triangular number).
		

Crossrefs

Subsequence of A380875.

Programs

  • Maple
    A385737:=proc(P) # To get all perimeters <= P.
        local p,x,y,z,u,v,w,s;
        p:=[];
        for z to floor((sqrt(24*P+9)-3)/6) do
            for x from z to floor((sqrt(4*P-3)-1)/2) do
                for y from max(z,floor((sqrt(1+4*(x^2+x-z^2-z))-1)/2)+1) to min(x,floor((sqrt(1+4*(2*P-x^2-x-z^2-z))-1)/2)) do
                	u:=z*(z+1)/2;
                	v:=y*(y+1)/2;
                	w:=x*(x+1)/2;
                	s:=(u+v+w)/2;
                	if issqr(s*(s-u)*(s-v)*(s-w)) then
                   	    p:=[op(p),u+v+w]
                   	fi
                od
            od
        od;
        return op(sort(p))
    end proc;
    A385737(22644);
Previous Showing 11-20 of 30 results. Next