cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A062331 a(n) is the product of the sum and the product of the digits of n (0 is not to be considered a factor in the product).

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 2, 6, 12, 20, 30, 42, 56, 72, 90, 4, 6, 16, 30, 48, 70, 96, 126, 160, 198, 9, 12, 30, 54, 84, 120, 162, 210, 264, 324, 16, 20, 48, 84, 128, 180, 240, 308, 384, 468, 25, 30, 70, 120, 180, 250, 330, 420, 520, 630, 36, 42, 96, 162, 240, 330
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Examples

			a(49) = (4+9)*(4*9) = 13*36 = 458.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i, i=l)*mul(`if`(i=0, 1, i), i=l))(convert(n, base, 10)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 29 2018
  • Mathematica
    psd[n_]:=Module[{idnx0=Select[IntegerDigits[n],#>0&]},Times@@idnx0  Total[idnx0]]
    psd/@Range[90]  (* Harvey P. Dale, Feb 24 2011 *)
    Array[Times @@ DeleteCases[#, 0]*Total@ # &@ IntegerDigits[#] &, 65] (* Michael De Vlieger, Jun 29 2018 *)
  • PARI
    a(n) = sumdigits(n) * vecprod(select(t->t, digits(n))) \\ Harry J. Smith, Aug 05 2009

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 22 2001

A101987 Product of nonzero digits of n-th prime.

Original entry on oeis.org

2, 3, 5, 7, 1, 3, 7, 9, 6, 18, 3, 21, 4, 12, 28, 15, 45, 6, 42, 7, 21, 63, 24, 72, 63, 1, 3, 7, 9, 3, 14, 3, 21, 27, 36, 5, 35, 18, 42, 21, 63, 8, 9, 27, 63, 81, 2, 12, 28, 36, 18, 54, 8, 10, 70, 36, 108, 14, 98, 16, 48, 54, 21, 3, 9, 21, 9, 63, 84, 108, 45, 135, 126, 63, 189, 72, 216
Offset: 1

Views

Author

Zak Seidov, Jan 29 2005

Keywords

Comments

First differs from A053666 in 26th term.

Examples

			a(25) = 63 because the 25th prime is 97 and 9 * 7 = 63.
a(26) = 1 because the 26th prime is 101, but we ignore the 0 and thus have 1 * 1 = 1.
		

Crossrefs

Programs

  • Maple
    a:= n-> mul(`if`(i=0, 1, i), i=convert(ithprime(n), base, 10)):
    seq(a(n), n=1..77);  # Alois P. Heinz, Mar 11 2022
  • Mathematica
    Table[Times@@ReplaceAll[IntegerDigits[Prime[n]], 0 -> 1], {n, 80}] (* Alonso del Arte, Feb 28 2014 *)
  • PARI
    a(n) = vecprod(select(x->(x>1), digits(prime(n)))); \\ Michel Marcus, Mar 11 2022
    
  • Python
    from math import prod
    from sympy import sieve
    def A051801(n): return prod(int(d) for d in str(n) if d != '0')
    def a(n): return A051801(sieve[n])
    print([a(n) for n in range(1, 78)]) # Michael S. Branicky, Mar 11 2022

Formula

a(n) = A051801(prime(n)). - Michel Marcus, Mar 11 2022

A230101 a(n) = product of n and all its nonzero digits.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 10, 11, 24, 39, 56, 75, 96, 119, 144, 171, 40, 42, 88, 138, 192, 250, 312, 378, 448, 522, 90, 93, 192, 297, 408, 525, 648, 777, 912, 1053, 160, 164, 336, 516, 704, 900, 1104, 1316, 1536, 1764, 250, 255, 520, 795, 1080, 1375, 1680, 1995, 2320, 2655, 360, 366, 744, 1134, 1536, 1950
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Examples

			a(15) = 15*1*5=75
		

Crossrefs

Programs

  • Maple
    with transforms; [seq(n*digprod0(n), n=0..200)];
  • Mathematica
    Table[n*Times@@Select[IntegerDigits[n],#!=0&],{n,0,70}] (* Harvey P. Dale, May 26 2018 *)

Formula

a(n) = n*A051801.

A230102 a(0)=1; thereafter a(n+1) = a(n) + (product of digits of a(n)).

Original entry on oeis.org

1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Comments

Never gets above 102.

Crossrefs

Programs

  • Haskell
    a230102 n = a230102_list !! n
    a230102_list = iterate a230099 1  -- Reinhard Zumkeller, Oct 13 2013
  • Mathematica
    NestList[#+Times@@IntegerDigits[#]&,1,50] (* Harvey P. Dale, Jul 30 2023 *)

A338882 Product of the nonzero digits of (n written in base 9).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 4, 6, 8, 10, 12, 14, 16, 3, 3, 6, 9, 12, 15, 18, 21, 24, 4, 4, 8, 12, 16, 20, 24, 28, 32, 5, 5, 10, 15, 20, 25, 30, 35, 40, 6, 6, 12, 18, 24, 30, 36, 42, 48, 7, 7, 14, 21, 28, 35, 42, 49, 56, 8, 8, 16, 24, 32, 40, 48, 56, 64
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 13 2020

Keywords

Crossrefs

Product of the nonzero digits of (n written in base k): A000012 (k = 2), A117592 (k = 3), A338854 (k = 4), A338803 (k = 5), A338863 (k = 6), A338880 (k = 7), A338881 (k = 8), this sequence (k = 9), A051801 (k = 10).

Programs

  • Mathematica
    Table[Times @@ DeleteCases[IntegerDigits[n, 9], 0], {n, 0, 80}]
    nmax = 80; A[] = 1; Do[A[x] = (1 + x + 2 x^2 + 3 x^3 + 4 x^4 + 5 x^5 + 6 x^6 + 7 x^7 + 8 x^8) A[x^9] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Times@@(IntegerDigits[n,9]/.(0->1)),{n,0,80}] (* Harvey P. Dale, Oct 08 2021 *)
  • PARI
    a(n) = vecprod(select(x->x, digits(n, 9))); \\ Michel Marcus, Nov 14 2020

Formula

G.f. A(x) satisfies: A(x) = (1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8) * A(x^9).

A352598 a(n) is the product of the squares of the nonzero digits of n.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 1, 4, 9, 16, 25, 36, 49, 64, 81, 4, 4, 16, 36, 64, 100, 144, 196, 256, 324, 9, 9, 36, 81, 144, 225, 324, 441, 576, 729, 16, 16, 64, 144, 256, 400, 576, 784, 1024, 1296, 25, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 36, 36, 144, 324
Offset: 1

Views

Author

Michel Marcus, Mar 22 2022

Keywords

Comments

a(n) = 1 iff n is a term > 0 of A007088. - Bernard Schott, Mar 24 2022

Crossrefs

Programs

  • Mathematica
    a[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^2; Array[a, 65] (* Amiram Eldar, Mar 22 2022 *)
  • PARI
    a(n) = vecprod(apply(x->x^2, select(x->(x>1), digits(n))));
    
  • Python
    from math import prod
    def a(n): return prod(int(d)**2 for d in str(n) if d != '0')
    print([a(n) for n in range(1, 64)]) # Michael S. Branicky, Mar 22 2022
    
  • Python
    from math import prod
    def A352598(n): return prod(map(lambda x:(0, 1, 4, 9, 16, 25, 36, 49, 64, 81)[int(x)],filter(lambda x:x>'1',str(n)))) # Chai Wah Wu, Sep 17 2024

Formula

a(n) = A051801(n)^2.
a(10*n) = a(n). - Bernard Schott, Mar 24 2022

A066565 Numbers that when multiplied by the product of their nonzero digits produce a square.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 45, 49, 96, 98, 100, 135, 144, 200, 250, 288, 289, 300, 338, 378, 384, 400, 405, 441, 500, 600, 700, 800, 882, 900, 1444, 1445, 1575, 1715, 1800, 2205, 2209, 2744, 2809, 3703, 4418, 4500, 4900, 5290, 6144, 6912, 6962, 7560, 7623
Offset: 1

Views

Author

Amarnath Murthy, Dec 18 2001

Keywords

Examples

			45 is a member as 45*4*5 = 900 = 30^2; 135 is a member as 135*3*5 = 2025 = 45^2; 200 is a member as 200*2 = 400.
		

Crossrefs

Cf. A051801.

Programs

  • PARI
    isok(k) = issquare( k * vecprod(select(x->(x!=0), digits(k))) )

Extensions

More terms from Jason Earls, Dec 24 2001
Offset changed from 0 to 1 by Harry J. Smith, Mar 04 2010

A066613 Numbers k such that the product of the nonzero digits of k equals the number of divisors of k.

Original entry on oeis.org

1, 2, 14, 22, 24, 32, 42, 116, 122, 126, 141, 202, 211, 221, 222, 260, 280, 340, 402, 411, 440, 512, 620, 840, 1021, 1041, 1062, 1114, 1118, 1128, 1132, 1141, 1144, 1201, 1202, 1206, 1218, 1222, 1242, 1250, 1314, 1332, 1340, 1380, 1401, 1411, 1602, 1611
Offset: 1

Views

Author

Amarnath Murthy, Dec 24 2001

Keywords

Examples

			24 is a term as there are 8 divisors of 24 = 2*4.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[ {a = Sort[ IntegerDigits[n]] }, While[ First[a] == 0, a = Drop[a, 1]]; Return[ Apply[ Times, a]]]; Select[ Range[10^4], f[ # ] == Length[ Divisors[ # ]] & ]
    pndQ[n_]:=Times@@Select[IntegerDigits[n],#!=0&]==DivisorSigma[0,n]; Select[Range[2000],pndQ] (* Harvey P. Dale, Oct 25 2016 *)
  • PARI
    isok(k) = { vecprod(select(x->(x!=0), digits(k))) == numdiv(k) } \\ Harry J. Smith, Mar 12 2010

Extensions

Corrected and extended by Jason Earls and Robert G. Wilson v, Dec 26 2001

A067067 a(n) = product of nonzero digits of n! (A000142).

Original entry on oeis.org

1, 1, 2, 6, 8, 2, 14, 20, 24, 2304, 2304, 11664, 1512, 2688, 112896, 508032, 18579456, 87091200, 11854080, 368640, 6967296, 22861440, 542126592, 1872809164800, 40633270272, 559872000, 26873856000, 8561413324800, 178362777600
Offset: 0

Views

Author

Amarnath Murthy, Jan 03 2002

Keywords

Examples

			a(10) = 2304 as 10! = 3628800 and 3*6*2*8*8 = 2304.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Sort[ IntegerDigits[n! ]] }, While[ First[d] == 0, d = Drop[d, 1]]; Return[ Apply[ Times, d]]]; Table[ f[n], {n, 0, 30} ]
    Table[Times@@DeleteCases[IntegerDigits[n!],0],{n,0,30}] (* Harvey P. Dale, Jan 11 2016 *)
  • PARI
    a(n) = {vecprod(select(x->(x!=0), digits(n!)))} \\ Harry J. Smith, May 03 2010

Formula

a(n) = A051801(n!).

Extensions

More terms from Jason Earls, Harvey P. Dale and Robert G. Wilson v, Jan 04 2002

A086354 Fixed point if (nonzero-digit product)-function at initial value 2^n is iterated.

Original entry on oeis.org

2, 4, 8, 6, 6, 8, 6, 6, 1, 8, 8, 2, 6, 2, 2, 4, 8, 2, 1, 6, 2, 2, 6, 8, 2, 8, 2, 8, 2, 2, 8, 6, 6, 2, 2, 6, 2, 2, 6, 8, 8, 6, 3, 4, 2, 2, 6, 6, 2, 8, 6, 2, 2, 9, 8, 6, 6, 5, 8, 2, 8, 8, 2, 6, 2, 8, 8, 8, 5, 8, 8, 8, 2, 8, 6, 4, 8, 6, 2, 7, 1, 8, 8, 4, 2, 8, 8
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=20, 2^20=1048576, iteration list={1048576,6720,84,32,6}, so a(20)=6.
		

Crossrefs

Programs

  • Maple
    A051801 := proc(n) local d,j: d:=convert(n,base,10): return mul(`if`(d[j]=0,1,d[j]), j=1..nops(d)): end: A086354 := proc(n) local m: m:=2^n: while(length(m)>1)do m:=A051801(m): od: return m: end: seq(A086354(n),n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    prd[x_] := Apply[Times, DeleteCases[IntegerDigits[x], 0]] Table[FixedPoint[prd, 2^w], {w, 1, 128}]

Formula

a(n) = A051802(2^n) = fixed point of A051801(2^n).
Previous Showing 11-20 of 47 results. Next