cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A360417 a(n) = 8*n^2 - 7*n + 2.

Original entry on oeis.org

2, 3, 20, 53, 102, 167, 248, 345, 458, 587, 732, 893, 1070, 1263, 1472, 1697, 1938, 2195, 2468, 2757, 3062, 3383, 3720, 4073, 4442, 4827, 5228, 5645, 6078, 6527, 6992, 7473, 7970, 8483, 9012, 9557, 10118, 10695, 11288, 11897, 12522, 13163, 13820, 14493, 15182
Offset: 0

Views

Author

James Propp, Feb 06 2023

Keywords

Comments

This is one of the four quadratic sequences that, interleaved, yield A360418.

Crossrefs

Programs

  • Mathematica
    Table[8*n^2 - 7*n + 2, {n, 0, 100}]

Formula

From Elmo R. Oliveira, Jan 28 2025: (Start)
G.f.: (17*x^2-3*x+2)/(1-x)^3.
E.g.f.: exp(x)*(2 + x + 8*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3.
a(n) = A360418(4*n-1) for n>=1. (End)
a(n) = A125201(n) + 1, n >= 1. - Omar E. Pol, Jan 28 2025

Extensions

a(0)=2 prepended and more terms from Alois P. Heinz, Jan 28 2025

A322161 Numbers k such that m = 8k^2 + 2k + 33 and 8m - 7 are both primes.

Original entry on oeis.org

1, 46, 58, 133, 145, 175, 208, 223, 241, 403, 430, 463, 526, 568, 808, 868, 985, 1015, 1021, 1105, 1120, 1360, 1465, 1501, 1600, 1918, 1978, 2236, 2350, 2413, 2908, 2965, 3043, 3211, 3265, 3523, 3556, 3568, 3601, 3721, 3811, 3868, 4066, 4291, 4300, 4336, 4831
Offset: 1

Views

Author

Amiram Eldar, Nov 29 2018

Keywords

Comments

Rotkiewicz proved that if k is in this sequence, and m = 8k^2 + 2k + 33, then m*(8m - 7) is an octadecagonal Fermat pseudoprime to base 2 (A322160), and thus under Schinzel's Hypothesis H there are infinitely many decagonal Fermat pseudoprimes to base 2.
The corresponding pseudoprimes are 14491, 2326319101, 5858192341, 160881885091, 227198832571, 481700815831, 960833787841, ...

Examples

			1 is in the sequence since 8*1^2 + 2*1 + 33 = 43 and 8*43 - 7 = 337 are both primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeQ[8#^2 + 2# + 33] && PrimeQ[64#^2 + 16# + 257]  &]
  • PARI
    isok(n) = isprime(m = 8*n^2+2*n+33) && isprime(8*m-7); \\ Michel Marcus, Nov 29 2018

A160970 Indices of square numbers that are also 18-gonal numbers.

Original entry on oeis.org

0, 1, 10, 44, 341, 1495, 11584, 50786, 393515, 1725229, 13367926, 58607000, 454115969, 1990912771, 15426575020, 67632427214, 524049434711, 2297511612505, 17802254205154, 78047762397956, 604752593540525, 2651326409917999, 20543785926172696, 90067050174814010
Offset: 1

Views

Author

Sture Sjöstedt, Jun 01 2009, Jul 02 2009

Keywords

Comments

Solving the Diophantine equation A051870(m) = m*(8*m-7) = k^2 leads to the entries.
k in the sequence and a list of associated m = 0, 1, 4, 16, 121, 529, 4096, 17956, 139129, 609961...

Crossrefs

Programs

  • Mathematica
    Join[{0},LinearRecurrence[{0,34,0,-1},{1,10,44,340},23]] (* Ray Chandler, Aug 01 2015 *)
  • PARI
    is(n)=ispolygonal(n^2,18) \\ Charles R Greathouse IV, Feb 14 2013
    
  • PARI
    concat(0, Vec(x^2*(x+1)*(x^2+9*x+1)/((x^2-6*x+1)*(x^2+6*x+1)) + O(x^50))) \\ Colin Barker, Jun 24 2015

Formula

a(n) = 34*a(n-2) - a(n-4), n>5. - R. J. Mathar, Oct 04 2009
G.f.: x^2*(x+1)*(x^2 + 9*x + 1)/((x^2 - 6*x + 1)*(x^2 + 6*x + 1)). - Colin Barker, Oct 07 2012
For all values excepting the leading 0, a(n) = sqrt(8*A006452(n)^2 - 7)*A006452(n) = sqrt(A006451(n-1)*(A006451(n-1) + 1)/2 + 1)*(2*A006451(n-1) + 1). - Raphie Frank, Feb 11 2013

Extensions

0 added in front and extended by R. J. Mathar, Oct 04 2009

A373646 Positive integers that cannot be written as a sum of a practical number and an 18-gonal number.

Original entry on oeis.org

10, 11, 14, 15, 23, 27, 35, 39, 44, 45, 47, 51, 62, 68, 70, 76, 77, 86, 92, 94, 95, 103, 110, 119, 125, 134, 137, 143, 149, 152, 153, 165, 170, 175, 182, 187, 202, 203, 206, 215, 223, 230, 233, 236, 239, 263, 283, 284, 287, 299, 314, 317, 319, 329, 332, 335
Offset: 1

Views

Author

Duc Van Khanh Tran, Jun 12 2024

Keywords

Comments

Somu and Tran (2024) conjectured that there are finitely many such integers. It was also conjectured that 8541224 is the largest such integer. This conjecture was checked up to 10^8.

Crossrefs

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.
Previous Showing 21-25 of 25 results.