cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A052026 Composites base 10 that remain composite in all bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

14, 18, 20, 24, 30, 32, 36, 40, 42, 44, 51, 54, 60, 62, 69, 70, 72, 74, 76, 78, 80, 86, 90, 92, 96, 98, 99, 100, 102, 104, 108, 110, 112, 114, 120, 124, 125, 126, 128, 129, 130, 132, 135, 140, 144, 146, 148, 150, 152, 156, 158, 159, 160, 162, 164, 168, 170, 174
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range@ 174, AllTrue[Table[FromDigits[IntegerDigits[#, i]], {i, 2, 10}], CompositeQ] &] (* Michael De Vlieger, Mar 24 2015, version 10 *)

A038537 Primes base 10 that remain primes in eight bases b, 2<=b<=10, when the expansions are interpreted as decimal numbers.

Original entry on oeis.org

2, 3, 379081, 59771671, 146752831, 764479423, 1479830551, 3406187401, 5631714889, 7740024337, 8256310441, 8772257161, 9522879913, 10350894331, 12852250993, 14261996563, 16082349433, 16199980009, 17727606151, 18172964503, 18294784903, 19393314433, 19472325391, 20582035993
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

a(4)-a(7) found by Jack Brennen (see link) added by Patrick De Geest, Dec 15 1999
Terms beyond a(7) from Sebastian Petzelberger, Mar 21 2015

A084482 Primes base 10 that remain primes in all nine bases b, 2<=b<=10, when the expansions are interpreted as decimal numbers.

Original entry on oeis.org

50006393431, 727533146383, 2250332130313, 2651541199513, 4437592255351, 4877749016143, 6777899690983, 7417899095713, 7431376081543, 7766799025303, 9078654198463, 10712216924641, 12244626455491, 13562282568103, 14180813918071, 14833027106593, 19479075240913, 19971686697103, 23196986067193, 34431442237963, 36429184518721, 49198998504223
Offset: 1

Views

Author

Jack Brennen, Jun 29 2003

Keywords

Comments

a(1) found by Jack Brennen on Jul 13 2001; remaining terms computed by Jack Brennen, Nov 15 2001.
The number must end with 1, 3, 7, or 9 in each base from 2 to 10; thus must be congruent to: 1 (mod 2), 1 (mod 3), 1 or 3 (mod 4), 1 or 3 (mod 5), 1 (mod 6), 1 or 3 (mod 7), 1 or 3 or 7 (mod 8), 1 or 7 (mod 9), 1 or 3 or 7 or 9 (mod 10).

Crossrefs

Programs

  • PARI
    isok(n) = sum(b=2, 10, isprime(subst(Pol(digits(n, b)), x, 10))) == 9; \\ Michel Marcus, Mar 22 2015

Extensions

Thanks to David W. Wilson for proposing the sequence and W. Edwin Clark for verifying the terms using Maple's command isprime.

A052027 Primes in base 10 that remain primes in seven bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

5, 9241, 17791, 330289, 391231, 1005481, 1210483, 2378143, 2469241, 2779939, 2840041, 6817501, 8320831, 9865711, 10871407, 11087191, 12259603, 13645393, 15665833, 16707883, 17694463, 25751863, 27794287, 31488481
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range@ 100000], Count[PrimeQ /@ Table[FromDigits[IntegerDigits[#, i]], {i, 2, 10}], True] == 7 &] (* Michael De Vlieger, Mar 21 2015, after Harvey P. Dale at A052032 *)

Extensions

Missing terms 2378143 and 2469241 added by Sebastian Petzelberger, Mar 21 2015

A235354 Minimal k > 1 such that the base-k representation of the n-th prime, read in decimal, is also prime.

Original entry on oeis.org

3, 2, 2, 4, 4, 4, 4, 4, 2, 4, 7, 4, 5, 4, 2, 4, 7, 4, 3, 4, 4, 3, 4, 2, 4, 2, 3, 4, 4, 4, 6, 4, 8, 3, 2, 4, 2, 2, 4, 2, 2, 3, 4, 3, 4, 2, 3, 8, 4, 2, 4, 7, 4, 4, 8, 10, 10, 9, 3, 5, 3, 4, 3, 4, 2, 4, 2, 6, 10, 3, 7, 4, 2, 3, 2, 2, 4, 10, 4, 3, 4, 3, 10, 3, 3
Offset: 1

Views

Author

Vladimir Shevelev, Jan 07 2014

Keywords

Comments

Conjecture 1. Every number 2, ..., 10 occurs infinitely many times.
Conjecture 2. There exists limit of average (a(1) + ... + a(n))/n.
Conjecture: The average in Conjecture 2 exists and is equal to 10. - Charles R Greathouse IV, Jan 08 2014

Examples

			Prime(7) = 17. The base 2 representation of 17 is 10001, which reinterpreted in decimal is 73 * 137; the base 3 representation of 17 is 122, which reread as decimal is 2 * 61; and the base 4 representation of 17 is 101, which reread as decimal is prime, so therefore a(7) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Module[{b=2},While[!PrimeQ[FromDigits[IntegerDigits[p,b]]],b++];b],{p,Prime[Range[90]]}] (* Harvey P. Dale, Aug 30 2025 *)
  • PARI
    rebase(n,from,to=10)=subst(Pol(digits(n,from)),'x,to)
    a(n)=my(p=prime(n)); for(b=2,9,if(isprime(rebase(p,b)),return(b))); 10 \\ Charles R Greathouse IV, Jan 08 2014

Extensions

More terms from Peter J. C. Moses

A052032 Primes base 10 that remain prime in one (and only one) other base b, 2<=b<10, expansions interpreted as decimal numbers.

Original entry on oeis.org

41, 53, 73, 107, 113, 131, 137, 139, 167, 173, 223, 233, 239, 257, 271, 293, 317, 389, 401, 467, 491, 509, 521, 557, 593, 641, 661, 691, 701, 739, 761, 809, 827, 829, 839, 853, 859, 863, 881, 887, 911, 937, 971, 977, 991, 1013, 1063, 1109, 1129, 1151, 1153
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]],Count[PrimeQ/@Table[FromDigits[ IntegerDigits[ #,i]],{i,2,9}],True]==1&] (* Harvey P. Dale, Oct 13 2012 *)

Extensions

Definition clarified by Harvey P. Dale, Oct 13 2012

A052028 Primes base 10 that remain primes in six bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

157, 523, 1249, 1483, 1753, 4051, 9187, 10531, 22921, 25981, 29599, 35899, 51031, 57751, 67579, 79939, 98323, 103561, 110581, 148471, 150193, 150343, 249703, 259183, 277063, 278623, 331081, 335833, 353401, 391903, 424819, 435553, 504547
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

A256350 Composites in base 10 that remain composite in exactly eight bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

4, 6, 12, 26, 27, 35, 38, 45, 46, 48, 49, 50, 52, 56, 57, 58, 63, 64, 65, 66, 68, 77, 81, 82, 84, 85, 88, 95, 105, 116, 117, 118, 119, 121, 122, 134, 136, 138, 142, 153, 154, 161, 165, 166, 171, 175, 176, 187, 188, 190, 192, 195, 207, 208, 218, 219, 220, 225
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

A256356 Composites in base 10 that remain composite in exactly two bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

33247243, 64037779, 104865433, 130237003, 238561081, 550677781, 947051353, 1013991553, 1246382791, 1343122201, 1607697631, 1609062751, 1632753601, 1788658063, 2203645111, 2364166213, 2393866411, 2480419783, 2518589671, 2544177511, 2668538575, 3029334883
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Comments

Are there any remaining composites in only one other base?

Crossrefs

A236174 Maximal prime among the base-k representations of the n-th prime, read in decimal, for k=2,3,...,10.

Original entry on oeis.org

2, 11, 101, 13, 23, 31, 101, 103, 10111, 131, 43, 211, 131, 223, 101111, 311, 113, 331, 2111, 1013, 1021, 2221, 1103, 1011001, 1201, 1100101, 10211, 1223, 1231, 1301, 331, 2003, 211, 12011, 10010101, 2113, 10011101, 10100011, 2213, 10101101, 10110011, 20201, 2333, 21011, 3011, 11000111, 21211, 337, 3203, 11100101
Offset: 1

Views

Author

Vladimir Shevelev, Jan 19 2014

Keywords

Comments

Let p = n-th prime. Write p in base k, k=2,3,4,5,..., and stop when the result is a prime when looked at in base 10. - N. J. A. Sloane, Jan 25 2014

Examples

			Let n=10, then prime(n)=29 (in base 10). The representations of 29 in bases 2,3,4,...,10 are 11101,1002,131,...,29 respectively. In this list 131 is the first and therefore the maximal prime. Thus a(10)=131.
		

Crossrefs

Programs

  • Mathematica
    Map[First[First[Select[Map[{#,PrimeQ[#]}&,Map[FromDigits,IntegerDigits[Prime[#],Range[2,10]]]],#[[2]]==True&]]]&,Range[50]]
    Table[SelectFirst[Table[FromDigits[IntegerDigits[Prime[n],b]],{b,2,10}],PrimeQ],{n,80}] (* Harvey P. Dale, May 17 2024 *)
  • PARI
    base_b(n, b) = {
      my(s=[], r, x);
      while(n>0,
        r = n%b;
        n = n\b;
        s = concat(r, s)
      );
      x=10;
      eval(Pol(s))
    }
    A236174(maxp) = {
      my(s=[], b, t);
      forprime(p=2, maxp,
        for(b=2, 10,
          t=base_b(p, b);
          if(isprime(t), s=concat(s, t); break)
        )
      );
      s
    } \\ Colin Barker, Jan 23 2014
    
  • Python
    from sympy import prime, isprime
    def A236174(n):
        p = prime(n)
        for b in range(2,11):
            x, y, z = p, 0, 1
            while x >= b:
                x, r = divmod(x,b)
                y += r*z
                z *= 10
            y += x*z
            if isprime(y):
                return y # Chai Wah Wu, Jan 03 2015
Showing 1-10 of 21 results. Next