cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A052044 Numbers k such that k^3 lacks the digit zero in its decimal expansion.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 38, 39, 41, 44, 45, 46, 49, 51, 53, 54, 55, 56, 57, 58, 61, 62, 64, 65, 66, 68, 71, 72, 75, 76, 77, 78, 81, 82, 83, 85, 88, 91, 92, 95, 96, 97, 98, 104, 105, 108, 111
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite since A052427 is a subsequence. - Amiram Eldar, Nov 23 2020

Crossrefs

Programs

Formula

a(n) = A052045(n)^(1/3). - Amiram Eldar, Nov 23 2020

A051751 Cubes arising in A051750.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 68921, 148877, 226981, 357911, 571787, 912673, 1442897, 2571353, 2685619, 3442951, 3869893, 4657463, 5177717, 5735339, 5929741, 6967871, 7645373, 9393931, 12649337
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 07 1999

Keywords

Crossrefs

Formula

A030078 INTERSECT A052382. - R. J. Mathar, Mar 23 2007

A052045 Cubes lacking the digit zero in their decimal expansion.

Original entry on oeis.org

1, 8, 27, 64, 125, 216, 343, 512, 729, 1331, 1728, 2197, 2744, 3375, 4913, 5832, 6859, 9261, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 29791, 32768, 35937, 42875, 46656, 54872, 59319, 68921, 85184, 91125, 97336, 117649, 132651, 148877
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Comments

This sequence is infinite since A052427(n)^3 is a term for all n>=0. - Amiram Eldar, Nov 23 2020

Crossrefs

Programs

  • Maple
    select(t -> not has(convert(t,base,10),0), [seq(m^3,m=1..10^3)]); # Robert Israel, Aug 24 2014
  • Mathematica
    Select[Range[53]^3, DigitCount[#, 10, 0] == 0 &] (* Amiram Eldar, Nov 23 2020 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (vecmin(digits(cub=n^3)), print1(cub, ", ")););} \\ Michel Marcus, Aug 25 2014
  • Python
    A052045 = [n**3 for n in range(1,10**5) if not str(n**3).count('0')]
    # Chai Wah Wu, Aug 24 2014
    

Formula

Intersection of A052382 and A000578; A168046(a(n))*A010057(a(n)) = 1. - Reinhard Zumkeller, Dec 01 2009
a(n) = A052044(n)^3. - Amiram Eldar, Nov 23 2020

A104315 Numbers having in decimal representation at least one zero, but with no zero in their square.

Original entry on oeis.org

106, 107, 108, 109, 204, 206, 207, 208, 209, 304, 306, 307, 308, 309, 404, 406, 407, 408, 409, 604, 606, 607, 608, 704, 706, 707, 804, 806, 807, 808, 809, 904, 907, 908, 909, 1056, 1057, 1058, 1059, 1061, 1062, 1063, 1065, 1066, 1067, 1069, 1072, 1073
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 01 2005

Keywords

Comments

A104316(n) = a(n)^2.

Examples

			909^2 = 826281, therefore 909 is a term.
		

Crossrefs

Programs

  • Haskell
    a104315 n = a104315_list !! (n-1)
    a104315_list = filter (\x -> a168046 x == 0 && a168046 (x ^ 2) == 1) [1..]
    -- Reinhard Zumkeller, Jan 03 2014
  • PARI
    isok(n) = !vecmin(digits(n)) && vecmin(digits(n^2)); \\ Michel Marcus, Jan 03 2014
    

Formula

(1 - A168046(a(n))) * A168046(A000290(a(n))) = 1. - Reinhard Zumkeller, Jan 03 2014

A069557 Squares in which the k-th significant digit either divides k or is a multiple of k. Is 1 only in case k has no other single-digit divisor.

Original entry on oeis.org

1, 4, 9, 25, 49, 64, 81, 324, 361, 625, 961, 4624, 8649, 7354944
Offset: 1

Views

Author

Amarnath Murthy, Mar 22 2002

Keywords

Comments

If the smallest prime divisor of n is > 7 only in such case the n-th digit is 1.
a(15) > 10^25 if it exists. - David A. Corneth, May 05 2024
The definition implies that no digit can be zero. - N. J. A. Sloane, May 05 2024

Examples

			8649 is a member in which the fourth digit is 8, a multiple of 4, the third one is 6, a multiple of 3, the second one is 4, a multiple of 2 and the least significant digit is 9.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n]}, Count[idn,0]==0 && And@@Divisible[idn,Range[Length[idn],1,-1]]]; Select[Range[500]^2, okQ]  (* Harvey P. Dale, Dec 20 2010 *)
  • PARI
    \\ See PARI link

Extensions

More terms from Sascha Kurz, Mar 23 2002
Offset corrected and a(14) from Sean A. Irvine, May 04 2024

A104265 Smallest n-digit square with no zero digits.

Original entry on oeis.org

1, 16, 121, 1156, 11236, 111556, 1115136, 11115556, 111112681, 1111155556, 11111478921, 111111555556, 1111118377216, 11111115555556, 111111226346761, 1111111155555556, 11111112515384644, 111111111555555556, 1111111112398242916, 11111111115555555556, 111111111113333185156, 1111111111155555555556
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2005

Keywords

Examples

			a(3) = Min{121, 144, 169, 196, ....} = 121.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = Ceiling[ Sqrt[10^n]]}, While[ Union[ IntegerDigits[ k^2]][[1]] == 0, k++ ]; k^2]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Mar 02 2005 *)
    snds[n_]:=Module[{c=Ceiling[Sqrt[FromDigits[Join[PadRight[{},n-1,1], {0}]]]]^2},While[DigitCount[c,10,0]>0,c=(1+Sqrt[c])^2];c]; Array[ snds,22] (* Harvey P. Dale, Jun 12 2020 *)
  • Python
    from sympy import integer_nthroot
    def A104265(n):
        m, a = integer_nthroot((10**n-1)//9,2)
        if not a:
            m += 1
        k = m**2
        while '0' in str(k):
            m += 1
            k += 2*m-1
        return k # Chai Wah Wu, Mar 24 2020

Formula

From Chai Wah Wu, Mar 24 2020: (Start)
a(n) >= (10^n-1)/9.
a(2n) = (10^n+2)^2/9 = A102807(n). Proof: the smallest 2n-digit number without zero digits is (10^(2n)-1)/9. ((10^n-1)/3)^2 = (10^(2n)-2*10^n+1)/9 < (10^(2n)-1)/9 for n >= 1. Thus a(2n) > ((10^n-1)/3)^2. The next square is ((10^n+2)/3)^2 = (10^(2n)-1)/9 + 4*(10^(n)-1)/9 + 1, i.e. it is n 1's followed by n-1 5's followed by the digit 6, and has no zero digits.
(End)

Extensions

More terms from Robert G. Wilson v, Mar 02 2005
Two more terms from Jon E. Schoenfield, Mar 29 2015
a(21)-a(22) from Chai Wah Wu, Mar 24 2020

A104266 Largest n-digit square with no zero digits.

Original entry on oeis.org

9, 81, 961, 9216, 99856, 978121, 9998244, 99321156, 999887641, 9978811236, 99999515529, 999332111556, 9999995824729, 99978881115136, 999999961946176, 9999333211115556, 99999999356895225, 999978918111112681, 9999999986285964964, 99999333321111155556
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 26 2005

Keywords

Comments

See Formula section for exact formula for terms whose index n is divisible by 4, and upper bounds for other cases; see Links for additional information on those other cases. - Jon E. Schoenfield, Mar 30 2015

Examples

			a(3) = Max{...., 729, 784, 841, 961} = 961.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local r;
      r:= floor(sqrt(10^n));
      while has(convert(r^2,base,10),0) do r:= r-1 od:
    r^2
    end proc:
    seq(f(n),n=1..24); # Robert Israel, Mar 29 2015
  • Mathematica
    f[n_] := Block[{k = Floor[ Sqrt[10^n]]}, While[ Union[ IntegerDigits[ k^2]][[1]] == 0, k-- ]; k^2]; Table[ f[n], {n, 18}] (* Robert G. Wilson v, Mar 03 2005 *)
  • PARI
    a(n)=k=floor(sqrt(10^n));while(k,if(type(k)=="t_INT"&&vecmin(digits(k^2)), return(k^2));k--)
    vector(20,n,a(n)) \\ Derek Orr, Mar 29 2015

Formula

From Jon E. Schoenfield, Mar 31 2015: (Start)
If n is divisible by 4, then a(n) = (10^(n/2) - ceiling(10^(n/4)/3))^2;
otherwise, if n is even, then a(n) < 10^(n) * (1 - (10^-((n-2)/4))* 2 / sqrt(90/1.000000000001026)) (see Links for derivation), except that a(2) = 81.
If n is odd, then a(n) ~ (floor(10^(n/2)))^2. (Although (floor(10*(n/2)))^2 gives an obvious upper bound for a(n) for all n, it seems to be a much tighter upper bound for odd values of n.) (End)

Extensions

More terms from Robert G. Wilson v, Mar 03 2005
More terms from Jon E. Schoenfield, Mar 29 2015

A104316 A104315(n)^2.

Original entry on oeis.org

11236, 11449, 11664, 11881, 41616, 42436, 42849, 43264, 43681, 92416, 93636, 94249, 94864, 95481, 163216, 164836, 165649, 166464, 167281, 364816, 367236, 368449, 369664, 495616, 498436, 499849, 646416, 649636, 651249, 652864, 654481
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 01 2005

Keywords

Comments

Subsequence of A052041, squares having in their decimal representation no zeros.

Crossrefs

Cf. A104317.

A118489 Squares for which the product of the digits is a triangular number.

Original entry on oeis.org

0, 1, 16, 25, 49, 100, 400, 576, 900, 1024, 1089, 1521, 1600, 2025, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 3025, 3600, 4096, 4900, 5041, 5625, 6084, 6400, 7056, 8100, 9025, 9409, 9604, 9801, 10000, 10201, 10404, 10609, 10816, 11025, 11236, 12100, 14400
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), May 05 2006

Keywords

Comments

Includes all squares not in A052041. - Robert Israel, May 25 2020

Examples

			26569 is in the sequence because (1) it is a square, (2) the product of its digits is 2*6*5*6*9=3240 which is a triangular number.
		

Crossrefs

Programs

  • Maple
    filter:= n -> issqr(1+8*convert(convert(n,base,10),`*`)):
    select(filter, [seq(i^2,i=1..1000)]); # Robert Israel, May 25 2020
  • Mathematica
    Select[Range[0,120]^2,OddQ[Sqrt[8 (Times@@IntegerDigits[#]) +1]]&] (* Harvey P. Dale, Jul 06 2021 *)

Extensions

1600 inserted by Robert Israel, May 25 2020

A257649 Squares that are the concatenation of two integers (without leading zeros) the sum of which is also a square.

Original entry on oeis.org

36, 81, 169, 196, 324, 361, 576, 729, 841, 1156, 1521, 1681, 1764, 2809, 3249, 3481, 4356, 5625, 6084, 6241, 6724, 7396, 7569, 7744, 7921, 8281, 9216, 12321, 12544, 12769, 12996, 13689, 15129, 16384, 17424, 18769, 19881, 24964, 25600, 31684, 32041, 34596, 36864, 38416, 39601
Offset: 1

Views

Author

Reiner Moewald, Jul 25 2015

Keywords

Comments

Squares that can be split up in more than one way, e.g., 729 (72 + 9 and 7 + 29), appear only once.
The number of such squares is infinite, since 39...960...01 (the numbers of the digits 9 and 0 is equal) can be split up into 3 and 9...960..01 with 3 + 9...960...01 = (100...0-2)^2 and 39...960...01 = (2*100...0 - 1)^2.
From Robert G. Wilson v, Aug 06 2015: (Start)
Number of terms < 10^k: 0, 2, 9, 27, 66, 149, 370, 910, 2164, 5325, 12916, 29448, ..., .
Terms which are members of A257649 in more than one way: 729, 7569, 15129, 56169, 86436, 123201, ..., .
Terms which are members of A257649 in more than two way: 881377344, 3784833441, 39999600001, 54444755556, 71111288889, 89999400001, 159999200001, 321111488889, 751111688889, ..., .
Least term which is a member of A257649 in k ways: 36, 729, 881377344, 399999960000001, ..., . (End)

Examples

			36 = 6^2 and 3 + 6 = 9 = 3^2.
		

Crossrefs

Subsequence of A052041.

Programs

  • Mathematica
    f[n_] := Block[{a, b, c, k = 1, idn = IntegerDigits@ n, lng, lst = {}}, lng = Length@ idn; While[k < lng, a = FromDigits[ Take[idn, {1, k}]]; b = FromDigits[ Take[idn, {k + 1, lng}]]; c = a*10^(lng - k) + b; If[b > 0 && Floor[1 + Log10@ b] == lng - k && IntegerQ@ Sqrt[a + b], AppendTo[lst, c]]; k++]; Length@ lst]; k = 1; lst = {}; While[k < 201, If[ f[k^2] > 0, AppendTo[lst, k^2]]; k++]; lst (* Robert G. Wilson v, Aug 06 2015 *)
    ctiQ[n_]:=AnyTrue[Total/@Select[Table[FromDigits/@TakeDrop[IntegerDigits[n],d],{d,IntegerLength[ n]-1}],IntegerLength[#[[1]]]+IntegerLength[#[[2]]] ==IntegerLength[ n]&],IntegerQ[ Sqrt[#]]&]; Select[Range[200]^2,ctiQ] (* Harvey P. Dale, Jun 04 2023 *)
  • Python
    import math
    print("Start")
    list =[]
    for i in range(1,1000):
       a = i*i
       b = str(a)
       l = len(b)
       for j in range(1, l):
          a_1 = b[:j]
          a_2 = b[j:]
          c = int(a_1)+int(a_2)
          sqrt_c = int(math.sqrt(int(c)))
          if (sqrt_c * sqrt_c == c) and (int(a_2[:1]) > 0):
             if not a in list:
                list.append(a)
    print(list)
    print("End")
Previous Showing 11-20 of 22 results. Next