cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A263361 Expansion of Product_{k>=1} 1/(1-x^(k+5))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 58, 76, 106, 140, 191, 252, 344, 454, 613, 814, 1091, 1442, 1926, 2538, 3368, 4432, 5852, 7678, 10107, 13222, 17337, 22636, 29582, 38518, 50195, 65198, 84712, 109784, 142254, 183924, 237742, 306688
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-5), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+5))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(6*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(6*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - 25*Pi^4/(432*Zeta(3)) - 5*Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(125/36) * Pi^2 / (576 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(143/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263362 Expansion of Product_{k>=1} 1/(1-x^(k+6))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 16, 21, 31, 41, 58, 76, 103, 133, 178, 229, 303, 394, 519, 675, 889, 1155, 1513, 1964, 2558, 3310, 4298, 5543, 7169, 9231, 11903, 15289, 19665, 25208, 32339, 41374, 52943, 67595, 86307, 109965, 140089, 178155
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-6), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+6))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(7*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(7*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - Pi^4/(12*Zeta(3)) - Pi^2 * n^(1/3) / (2^(1/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(191/36) * Pi^(5/2) / (276480 * A * 2^(11/36) * sqrt(3) * Zeta(3)^(209/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263363 Expansion of Product_{k>=1} 1/(1-x^(k+7))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 17, 22, 32, 42, 59, 76, 103, 130, 171, 216, 280, 354, 460, 584, 757, 968, 1249, 1596, 2056, 2618, 3354, 4266, 5441, 6900, 8778, 11108, 14094, 17814, 22546, 28450, 35946, 45280, 57088, 71806, 90347
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-7), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+7))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(8*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(8*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - 49*Pi^4/(432*Zeta(3)) - 7*Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(269/36) * Pi^3 / (398131200 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(287/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A263364 Expansion of Product_{k>=1} 1/(1-x^(k+8))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 18, 23, 33, 43, 60, 77, 103, 130, 168, 209, 267, 331, 420, 526, 667, 839, 1069, 1347, 1711, 2160, 2733, 3437, 4336, 5435, 6828, 8543, 10699, 13357, 16703, 20820, 25986, 32362, 40327, 50152, 62407
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

In general, if v>=0 and g.f. = Product_{k>=1} 1/(1-x^(k+v))^k, then a(n) ~ d1(v) * n^(v^2/6 - 25/36) * exp(-Pi^4 * v^2 / (432*Zeta(3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2^(2/3) - v * Pi^2 * n^(1/3) / (3 * 2^(4/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * 2^(v^2/6 + 11/36) * Zeta(3)^(v^2/6 - 7/36)), where Zeta(3) = A002117.
d1(v) = exp(Integral_{x=0..infinity} (1/(x*exp((v-1)*x) * (exp(x)-1)^2) - (6*v^2-1) / (12*x*exp(x)) + v/x^2 - 1/x^3) dx).
d1(v) = (exp(Zeta'(-1) - v*Zeta'(0))) / Product_{j=0..v-1} j!, where Zeta'(0) = -A075700, Zeta'(-1) = A084448 and Product_{j=0..v-1} j! = A000178(v-1).
d1(v) = exp(1/12) * (2*Pi)^(v/2) / (A * G(v+1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.

Crossrefs

Cf. A000219 (v=0), A052847 (v=1), A263358 (v=2), A263359 (v=3), A263360 (v=4), A263361 (v=5), A263362 (v=6), A263363 (v=7).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          max(0, d-8), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 16 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1-x^(k+8))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 60; CoefficientList[Series[E^Sum[x^(9*k)/(k*(1-x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: exp(Sum_{k>=1} x^(9*k)/(k*(1-x^k)^2)).
a(n) ~ exp(1/12 - 4*Pi^4/(27*Zeta(3)) - 2^(5/3) * Pi^2 * n^(1/3) / (3 * Zeta(3)^(1/3)) + 3 * 2^(-2/3) * Zeta(3)^(1/3) * n^(2/3)) * n^(359/36) * Pi^(7/2) / (8026324992000 * A * 2^(35/36) * sqrt(3) * Zeta(3)^(377/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A363601 Number of partitions of n where there are k^2 - 1 kinds of parts k.

Original entry on oeis.org

1, 0, 3, 8, 21, 48, 126, 288, 693, 1568, 3570, 7896, 17417, 37632, 80823, 171192, 359733, 747936, 1543192, 3155760, 6407037, 12909024, 25835649, 51359136, 101470854, 199264128, 389096028, 755591256, 1459643343, 2805471984, 5366161740, 10216161336, 19362398580
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2023

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    series(exp(add((sigma[3](k) - sigma[1](k))*x^k/k, k = 1..50)), x, 51):
    seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Jan 16 2025
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(k^2-1)))

Formula

G.f.: 1/Product_{k>=1} (1-x^k)^(k^2-1).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A092348(k) * a(n-k).
G.f.: exp(Sum_{k >= 1} (sigma_3(k) - sigma_1(k))*x^k/k) = 1 + 3*x^2 + 8*x^3 + 21*x^4 + 48*x^5 + .... - Peter Bala, Jan 16 2025

Extensions

Name suggested by Joerg Arndt, Jun 11 2023

A263352 Expansion of Product_{k>=1} 1/(1 - x^(2*k+3))^k.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 0, 3, 1, 4, 2, 5, 6, 7, 10, 9, 19, 14, 29, 23, 46, 38, 66, 64, 99, 107, 143, 171, 211, 270, 311, 418, 465, 633, 698, 945, 1049, 1399, 1579, 2052, 2364, 2997, 3527, 4366, 5219, 6339, 7686, 9197, 11234, 13321, 16340, 19261, 23622, 27796
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2015

Keywords

Comments

From Vaclav Kotesovec, Oct 17 2015: (Start)
In general, if g.f. = Product_{k>=1} 1/(1-x^(2*k+v))^k and v>0 is odd, then a(n) ~ d2(v) * (2*n)^(v^2/24 - 25/36) * exp(-Pi^4 * v^2 / (1728*Zeta(3)) - Pi^2 * v * n^(1/3) /(3 * 2^(8/3) * Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) / (sqrt(3*Pi) * Zeta(3)^(v^2/24 - 7/36)), where Zeta(3) = A002117.
d2(v) = exp(Integral_{x=0..infinity} 1/(x*exp((v-2)*x) * (exp(2*x)- 1)^2) - (3*v^2-2)/(24*x*exp(x)) + v/(4*x^2) - 1/(4*x^3) dx).
d2(v) = 2^(v/4 - 1/12) * exp(-Zeta'(-1)/2) / Product_{j=1..(v-1)/2} (2*j-1)!!, where Zeta'(-1) = A084448 and Product_{j=1..(v-1)/2} (2*j-1)!! = A057863((v-1)/2).
d2(v) = 2^(1/12 + v/4 - v^2/8) * exp(1/12) * Pi^(v/4) / (A * G(v/2 + 1)), where A = A074962 is the Glaisher-Kinkelin constant and G is the Barnes G-function.
(End)

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(d>1 and d::odd, (d-3)/2, 0),
          d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 17 2015
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[1/(1 - x^(2*k+3))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 2^(25/72) * sqrt(A) * exp(-1/24 + 3 * 2^(-4/3) * Zeta(3)^(1/3) * n^(2/3) - Pi^4/(192*Zeta(3)) - Pi^2 * n^(1/3)/(2^(8/3) * Zeta(3)^(1/3))) / (sqrt(3*Pi) * Zeta(3)^(13/72) * n^(23/72)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A323654 Number of non-isomorphic multiset partitions of weight n with no constant parts and only two distinct vertices.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 50, 69, 125, 177, 301, 440, 717, 1055, 1675, 2471, 3835, 5660, 8627, 12697, 19095, 27978, 41581, 60650, 89244, 129490, 188925, 272676, 394809, 566882, 815191, 1164510, 1664295, 2365698, 3361844, 4756030, 6723280, 9468138, 13319299
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

First differs from A304967 at a(10) = 50, A304967(10) = 49.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of positive integer matrices with only two columns and sum of entries equal to n, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(7) = 9 multiset partitions:
  {{12}}  {{122}}  {{1122}}    {{11222}}    {{111222}}      {{1112222}}
                   {{1222}}    {{12222}}    {{112222}}      {{1122222}}
                   {{12}{12}}  {{12}{122}}  {{122222}}      {{1222222}}
                                            {{112}{122}}    {{112}{1222}}
                                            {{12}{1122}}    {{12}{11222}}
                                            {{12}{1222}}    {{12}{12222}}
                                            {{122}{122}}    {{122}{1122}}
                                            {{12}{12}{12}}  {{122}{1222}}
                                                            {{12}{12}{122}}
Inequivalent representatives of the a(8) = 20 matrices:
  [4 4] [3 5] [2 6] [1 7]
.
  [1 1] [1 1] [1 1] [2 1] [2 1] [1 2] [1 2] [3 1] [2 2] [2 2] [1 3]
  [3 3] [2 4] [1 5] [2 3] [1 4] [2 3] [1 4] [1 3] [2 2] [1 3] [1 3]
.
  [1 1] [1 1] [1 1] [1 1]
  [1 1] [1 1] [2 1] [1 2]
  [2 2] [1 3] [1 2] [1 2]
.
  [1 1]
  [1 1]
  [1 1]
  [1 1]
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat(1,(EulerT(vector(n, k, k-1)) + EulerT(vector(n, k, if(k%2, 0, (k+2)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019

Formula

a(2*n) = (A052847(2*n) + A003293(n))/2; a(2*n+1) = A052847(2*n+1)/2. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019

A323655 Number of non-isomorphic multiset partitions of weight n with at most 2 distinct vertices, or with at most 2 (not necessarily distinct) edges.

Original entry on oeis.org

1, 1, 4, 7, 19, 35, 80, 149, 307, 566, 1092, 1974, 3643, 6447, 11498, 19947, 34636, 58974, 100182, 167713, 279659, 461056, 756562, 1230104, 1990255, 3195471, 5105540, 8103722, 12801925, 20107448, 31439978, 48907179, 75755094, 116797754, 179354540, 274253042
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of nonnegative integer matrices with only one or two columns, no zero rows or columns, and sum of entries equal to n, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 distinct vertices:
  {{1}}  {{11}}    {{111}}      {{1111}}
         {{12}}    {{122}}      {{1122}}
         {{1}{1}}  {{1}{11}}    {{1222}}
         {{1}{2}}  {{1}{22}}    {{1}{111}}
                   {{2}{12}}    {{11}{11}}
                   {{1}{1}{1}}  {{1}{122}}
                   {{1}{2}{2}}  {{11}{22}}
                                {{12}{12}}
                                {{1}{222}}
                                {{12}{22}}
                                {{2}{122}}
                                {{1}{1}{11}}
                                {{1}{1}{22}}
                                {{1}{2}{12}}
                                {{1}{2}{22}}
                                {{2}{2}{12}}
                                {{1}{1}{1}{1}}
                                {{1}{1}{2}{2}}
                                {{1}{2}{2}{2}}
Non-isomorphic representatives of the a(1) = 1 through a(4) = 19 multiset partitions with at most 2 edges:
  {{1}}  {{11}}    {{111}}    {{1111}}
         {{12}}    {{122}}    {{1122}}
         {{1}{1}}  {{123}}    {{1222}}
         {{1}{2}}  {{1}{11}}  {{1233}}
                   {{1}{22}}  {{1234}}
                   {{1}{23}}  {{1}{111}}
                   {{2}{12}}  {{11}{11}}
                              {{1}{122}}
                              {{11}{22}}
                              {{12}{12}}
                              {{1}{222}}
                              {{12}{22}}
                              {{1}{233}}
                              {{12}{33}}
                              {{1}{234}}
                              {{12}{34}}
                              {{13}{23}}
                              {{2}{122}}
                              {{3}{123}}
Inequivalent representatives of the a(4) = 19 matrices:
  [4] [2 2] [1 3]
.
  [1] [1 0] [1 0] [0 1] [2] [2 0] [1 1] [1 1]
  [3] [1 2] [0 3] [1 2] [2] [0 2] [1 1] [0 2]
.
  [1] [1 0] [1 0] [1 0] [0 1]
  [1] [1 0] [0 1] [0 1] [0 1]
  [2] [0 2] [1 1] [0 2] [1 1]
.
  [1] [1 0] [1 0]
  [1] [1 0] [0 1]
  [1] [0 1] [0 1]
  [1] [0 1] [0 1]
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat(1, (EulerT(vector(n, k, k+1)) + EulerT(vector(n, k, if(k%2, 0, (k+6)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019

Formula

a(2*n) = (A005380(2*n) + A005986(n))/2; a(2*n+1) = A005380(2*n+1)/2. - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019

A323656 Number of non-isomorphic multiset partitions of weight n with exactly 2 distinct vertices, or with exactly 2 (not necessarily distinct) edges.

Original entry on oeis.org

0, 0, 2, 4, 14, 28, 69, 134, 285, 536, 1050, 1918, 3566, 6346, 11363, 19771, 34405, 58677, 99797, 167223, 279032, 460264, 755560, 1228849, 1988680, 3193513, 5103104, 8100712, 12798207, 20102883, 31434374, 48900337, 75746745, 116787611, 179342230, 274238159
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2019

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of nonnegative integer matrices with only two columns, no zero rows or columns, and sum of entries equal to n, up to row and column permutations.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(4) = 14 multiset partitions with exactly 2 distinct vertices:
  {{12}}    {{122}}      {{1122}}
  {{1}{2}}  {{1}{22}}    {{1222}}
            {{2}{12}}    {{1}{122}}
            {{1}{2}{2}}  {{11}{22}}
                         {{12}{12}}
                         {{1}{222}}
                         {{12}{22}}
                         {{2}{122}}
                         {{1}{1}{22}}
                         {{1}{2}{12}}
                         {{1}{2}{22}}
                         {{2}{2}{12}}
                         {{1}{1}{2}{2}}
                         {{1}{2}{2}{2}}
Non-isomorphic representatives of the a(2) = 2 through a(4) = 14 multiset partitions with exactly 2 edges:
  {{1}{1}}  {{1}{11}}  {{1}{111}}
  {{1}{2}}  {{1}{22}}  {{11}{11}}
            {{1}{23}}  {{1}{122}}
            {{2}{12}}  {{11}{22}}
                       {{12}{12}}
                       {{1}{222}}
                       {{12}{22}}
                       {{1}{233}}
                       {{12}{33}}
                       {{1}{234}}
                       {{12}{34}}
                       {{13}{23}}
                       {{2}{122}}
                       {{3}{123}}
Inequivalent representatives of the a(4) = 14 matrices:
  [2 2] [1 3]
.
  [1 0] [1 0] [0 1] [2 0] [1 1] [1 1]
  [1 2] [0 3] [1 2] [0 2] [1 1] [0 2]
.
  [1 0] [1 0] [1 0] [0 1]
  [1 0] [0 1] [0 1] [0 1]
  [0 2] [1 1] [0 2] [1 1]
.
  [1 0] [1 0]
  [1 0] [0 1]
  [0 1] [0 1]
  [0 1] [0 1]
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={concat(0, (EulerT(vector(n, k, k+1)) + EulerT(vector(n, k, if(k%2, 0, (k+6)\4))))/2 - EulerT(vector(n,k,1)))} \\ Andrew Howroyd, Aug 26 2019

Formula

a(n) = A323655(n) - A000041(n). - Andrew Howroyd, Aug 26 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019

A264923 G.f.: 1 / Product_{n>=0} (1 - x^(n+3))^((n+1)*(n+2)/2!).

Original entry on oeis.org

1, 0, 0, 1, 3, 6, 11, 18, 33, 57, 105, 183, 330, 567, 990, 1693, 2904, 4917, 8343, 14010, 23511, 39171, 65100, 107592, 177352, 290931, 475905, 775381, 1259637, 2039094, 3291613, 5296467, 8499339, 13599292, 21702795, 34541724, 54839894, 86847255, 137212197, 216274466, 340129773, 533726442, 835732774, 1305877914, 2036369010
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2015

Keywords

Comments

Number of partitions of n objects of 3 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].

Examples

			G.f.: A(x) = 1 + x^3 + 3*x^4 + 6*x^5 + 11*x^6 + 18*x^7 + 33*x^8 + 57*x^9 + 105*x^10 +...
where
1/A(x) = (1-x^3) * (1-x^4)^3 * (1-x^5)^6 * (1-x^6)^10 * (1-x^7)^15 * (1-x^8)^21 * (1-x^9)^28 * (1-x^10)^36 * (1-x^11)^45 *...
Also,
log(A(x)) = (x/(1-x))^3 + (x^2/(1-x^2))^3/2 + (x^3/(1-x^3))^3/3 + (x^4/(1-x^4))^3/4 + (x^5/(1-x^5))^3/5 + (x^6/(1-x^6))^3/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-2)*(k-1)/2), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
  • PARI
    {a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+3) +x*O(x^n) )^((k+1)*(k+2)/2) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^3 /k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {L(n) = sumdiv(n,d, d*(d-1)*(d-2)/2! )}
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^3 /n ).
G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)/2!.
a(n) ~ Pi^(3/8) / (2^(55/32) * 15^(7/32) * n^(23/32)) * exp(29*Zeta(3)/(8*Pi^2) - log(2*Pi)/2 - 3*Zeta'(-1)/2 - 2025*Zeta(3)^3/(2*Pi^8) + (5^(1/4)*Pi/6^(3/4) - 135*15^(1/4)*Zeta(3)^2/(2^(7/4)*Pi^5)) * n^(1/4) - 3*sqrt(15*n/2)*Zeta(3)/Pi^2 + 2^(7/4)*Pi/(3*15^(1/4)) * n^(3/4)). - Vaclav Kotesovec, Dec 09 2015
Previous Showing 11-20 of 29 results. Next