cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A264924 G.f.: 1 / Product_{n>=0} (1 - x^(n+4))^((n+1)*(n+2)*(n+3)/3!).

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 10, 20, 36, 60, 104, 180, 336, 620, 1174, 2160, 3961, 7100, 12690, 22424, 39651, 69820, 122970, 215904, 378470, 660872, 1150740, 1996200, 3452685, 5952916, 10237576, 17559460, 30049285, 51301020, 87390872, 148534232, 251916041, 426329040, 720003646, 1213481344, 2041155052, 3426721080
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2015

Keywords

Comments

Number of partitions of n objects of 4 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].

Examples

			G.f.: A(x) = 1 + x^4 + 4*x^5 + 10*x^6 + 20*x^7 + 36*x^8 + 60*x^9 + 104*x^10 + 180*x^11 +...
where
1/A(x) = (1-x^4) * (1-x^5)^4 * (1-x^6)^10 * (1-x^7)^20 * (1-x^8)^35 * (1-x^9)^56 * (1-x^10)^84 * (1-x^11)^120 * (1-x^12)^165 *...
Also,
log(A(x)) = (x/(1-x))^4 + (x^2/(1-x^2))^4/2 + (x^3/(1-x^3))^4/3 + (x^4/(1-x^4))^4/4 + (x^5/(1-x^5))^4/5 + (x^6/(1-x^6))^4/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-3)*(k-2)*(k-1)/6), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
  • PARI
    {a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+4) +x*O(x^n) )^((k+1)*(k+2)*(k+3)/3!) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^4 /k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {L(n) = sumdiv(n,d, d*(d-1)*(d-2)*(d-3)/3! )}
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^4 /n ).
G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)*(d-3)/3!.
a(n) ~ Zeta(5)^(109/3600) / (2^(791/1800) * n^(1909/3600) * sqrt(5*Pi)) * exp(11*Zeta'(-1)/6 + log(2*Pi)/2 + Zeta(3)/(4*Pi^2) - Pi^16/(194400000 * Zeta(5)^3) + 11*Pi^8 * Zeta(3)/(108000 * Zeta(5)^2) - Pi^6/(1800*Zeta(5)) - 121*Zeta(3)^2/(360*Zeta(5)) + Zeta'(-3)/6 + (-Pi^12/(1350000 * 2^(2/5) * Zeta(5)^(11/5)) + 11*Pi^4 * Zeta(3)/(900 * 2^(2/5) * Zeta(5)^(6/5)) - Pi^2/(3*2^(7/5) * Zeta(5)^(1/5))) * n^(1/5) + (-Pi^8/(9000 * 2^(4/5) * Zeta(5)^(7/5)) + 11*Zeta(3)/(3*2^(9/5) * Zeta(5)^(2/5))) * n^(2/5) - Pi^4/(90 * 2^(1/5) * Zeta(5)^(3/5)) * n^(3/5) + 5*Zeta(5)^(1/5) / 2^(8/5) * n^(4/5)). - Vaclav Kotesovec, Dec 09 2015

A264925 G.f.: 1 / Product_{n>=0} (1 - x^(n+5))^((n+1)*(n+2)*(n+3)*(n+4)/4!).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 5, 15, 35, 70, 127, 215, 360, 605, 1080, 2003, 3890, 7570, 14715, 27960, 52255, 95705, 173295, 311060, 557400, 999032, 1795880, 3235130, 5835955, 10521060, 18931287, 33956485, 60692510, 108087835, 191883595, 339724144, 600203700, 1058605775, 1864535670, 3279862975, 5762287759, 10109925380
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2015

Keywords

Comments

Number of partitions of n objects of 5 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].

Examples

			G.f.: A(x) = 1 + x^5 + 5*x^6 + 15*x^7 + 35*x^8 + 70*x^9 + 127*x^10 + 215*x^11 + 360*x^12 +...
where
1/A(x) = (1-x^5) * (1-x^6)^5 * (1-x^7)^15 * (1-x^8)^35 * (1-x^9)^70 * (1-x^10)^126 * (1-x^11)^210 * (1-x^12)^330 * (1-x^13)^495 *...
Also,
log(A(x)) = (x/(1-x))^5 + (x^2/(1-x^2))^5/2 + (x^3/(1-x^3))^5/3 + (x^4/(1-x^4))^5/4 + (x^5/(1-x^5))^5/5 + (x^6/(1-x^6))^5/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-4)*(k-3)*(k-2)*(k-1)/24), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
  • PARI
    {a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+4) +x*O(x^n) )^((k+1)*(k+2)*(k+3)/3!) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^4 /k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {L(n) = sumdiv(n,d, d*(d-1)*(d-2)*(d-3)*(d-4)/4!)}
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^5 /n ).
G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)*(d-3)*(d-4)/4!.
a(n) ~ Pi^(95/288) / (2 * 3^(527/576) * 7^(239/1728) * n^(1103/1728)) * exp(-25*Zeta'(-1)/12 - log(2*Pi)/2 + 595*Zeta(3)/(48*Pi^2) - 29291*Zeta(5) / (128*Pi^4) - 2480625 * Zeta(3) * Zeta(5)^2 / (2*Pi^12) + 72930375 * Zeta(5)^3 / (2*Pi^14) - 1063324867500 * Zeta(5)^5/Pi^24 - 5*Zeta'(-3)/12 + (41 * 7^(1/6) * Pi/(768*sqrt(3)) - 2625 * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5)/(2*Pi^7) + 540225 * sqrt(3) * 7^(1/6) * Zeta(5)^2/(16*Pi^9) - 4740474375 * sqrt(3) * 7^(1/6) * Zeta(5)^4/(4*Pi^19)) * n^(1/6) + (-25 * 7^(1/3) * Zeta(3)/(4*Pi^2) + 735 * 7^(1/3) * Zeta(5) /(8*Pi^4) - 3969000 * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (7*sqrt(7/3)*Pi/24 - 4725 * sqrt(21) * Zeta(5)^2 / Pi^9) * sqrt(n) - 45 * 7^(2/3) * Zeta(5)/(2*Pi^4) * n^(2/3) + 2*sqrt(3)*Pi / (5*7^(1/6)) * n^(5/6)). - Vaclav Kotesovec, Dec 09 2015

A264926 G.f.: 1 / Product_{n>=0} (1 - x^(n+6))^((n+1)*(n+2)*(n+3)*(n+4)*(n+5)/5!).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 798, 1329, 2184, 3696, 6552, 12405, 24486, 49524, 99722, 197967, 383796, 727609, 1350174, 2466534, 4457844, 8022819, 14448168, 26142810, 47603010, 87222576, 160522228, 295996791, 545445468, 1002392105, 1834644210, 3342375099, 6061611192, 10949981496, 19720143366, 35440268956
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2015

Keywords

Comments

Number of partitions of n objects of 6 colors, where each part must contain at least one of each color. [Conjecture - see comment by Franklin T. Adams-Watters in A052847].

Examples

			G.f.: A(x) = 1 + x^6 + 6*x^7 + 21*x^8 + 56*x^9 + 126*x^10 + 252*x^11 + 463*x^12 +...
where
1/A(x) = (1-x^6) * (1-x^7)^6 * (1-x^8)^21 * (1-x^9)^56 * (1-x^10)^126 * (1-x^11)^252 * (1-x^12)^462 * (1-x^13)^792 * (1-x^14)^1287 * (1-x^15)^2002 *...
Also,
log(A(x)) = (x/(1-x))^6 + (x^2/(1-x^2))^6/2 + (x^3/(1-x^3))^6/3 + (x^4/(1-x^4))^6/4 + (x^5/(1-x^5))^6/5 + (x^6/(1-x^6))^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^((k-5)*(k-4)*(k-3)*(k-2)*(k-1)/120), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Dec 09 2015 *)
  • PARI
    {a(n) = my(A=1); A = prod(k=0,n, 1/(1 - x^(k+6) +x*O(x^n) )^((k+1)*(k+2)*(k+3)*(k+4)*(k+5)/5!) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, (x^k/(1 - x^k))^6 /k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
    
  • PARI
    {L(n) = sumdiv(n,d, d*(d-1)*(d-2)*(d-3)*(d-4)*(d-5)/5! )}
    {a(n) = my(A=1); A = exp( sum(k=1,n+1, L(k) * x^k/k +x*O(x^n) ) ); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} ( x^n/(1-x^n) )^6 /n ).
G.f.: exp( Sum_{n>=1} L(n) * x^n/n ), where L(n) = Sum_{d|n} d*(d-1)*(d-2)*(d-3)*(d-4)*(d-5)/5!.
a(n) ~ (3*Zeta(7))^(11153/423360) / (2^(200527/423360) * n^(222833/423360) * sqrt(7*Pi)) * exp(137*Zeta'(-1)/60 + log(2*Pi)/2 + 15*Zeta(3) / (32*Pi^2) - 3*Zeta(5) / (32*Pi^4) - Pi^36 / (102098378167208640 * Zeta(7)^5) + 17 * Pi^24 * Zeta(5) / (571643448768 * Zeta(7)^4) - Pi^22 / (9073705536 * Zeta(7)^3) - 289 * Pi^12 * Zeta(5)^2 / (12002256 * Zeta(7)^3) + 137 * Pi^12 * Zeta(3) / (60011280 * Zeta(7)^2) + 17 * Pi^10 * Zeta(5) / (127008 * Zeta(7)^2) + 4913 * Zeta(5)^3 / (1512 * Zeta(7)^2) - 253 * Pi^8 / (1016064 * Zeta(7)) - 2329 * Zeta(3) * Zeta(5) / (1260 * Zeta(7)) + Zeta'(-5)/120 + 17 * Zeta'(-3)/24 + (-11*Pi^30 / (1544080410553464 * 6^(1/7) * Zeta(7)^(29/7)) + 85 * Pi^18 * Zeta(5) / (4631370534 * 6^(1/7) * Zeta(7)^(22/7)) - Pi^16 / (14002632 * 6^(1/7) * Zeta(7)^(15/7)) - 289 * Pi^6 * Zeta(5)^2 / (27783 * 6^(1/7) * Zeta(7)^(15/7)) + 137 * Pi^6 * Zeta(3) / (79380 * 6^(1/7) * Zeta(7)^(8/7)) + 17 * Pi^4 * Zeta(5) / (336 * 6^(1/7) * Zeta(7)^(8/7)) - Pi^2 / (6^(8/7) * Zeta(7)^(1/7))) * n^(1/7) + (-Pi^24 / (194517562428 * 6^(2/7) * Zeta(7)^(23/7)) + 17 * Pi^12 * Zeta(5) / (1555848 * 6^(2/7) * Zeta(7)^(16/7)) - Pi^10 / (21168 * 6^(2/7) * Zeta(7)^(9/7)) - 289 * Zeta(5)^2 / (84 * 6^(2/7) * Zeta(7)^(9/7)) + 137 * Zeta(3) / (60 * (6*Zeta(7))^(2/7))) * n^(2/7) + (-5*Pi^18 / (1323248724 * 6^(3/7) * Zeta(7)^(17/7)) + 17 * Pi^6 * Zeta(5) / (2646 * 6^(3/7) * Zeta(7)^(10/7)) - Pi^4 /(24 * (6*Zeta(7))^(3/7))) * n^(3/7) + (-Pi^12 / (333396 * 6^(4/7) * Zeta(7)^(11/7)) + 17 * Zeta(5) / (4 * (6*Zeta(7))^(4/7))) * n^(4/7) - Pi^6 / (315*(6*Zeta(7))^(5/7)) * n^(5/7) + 7 * Zeta(7)^(1/7) / 6^(6/7) * n^(6/7)). - Vaclav Kotesovec, Dec 09 2015

A005309 Fermionic string states.

Original entry on oeis.org

1, 0, 2, 4, 8, 16, 32, 60, 114, 212, 384, 692, 1232, 2160, 3760, 6480, 11056, 18728, 31474, 52492, 86976, 143176, 234224, 380988, 616288, 991624, 1587600, 2529560, 4011808, 6334656, 9960080, 15596532, 24327122, 37801568, 58525152, 90291232, 138825416
Offset: 0

Views

Author

Keywords

Comments

See the reference for precise definition.
The g.f. -(1-2*z+2*z**2)/(-1+2*z) conjectured by Simon Plouffe in his 1992 dissertation is not correct.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

G.f. Product_{k>=1} ((1+x^k)/(1-x^k))^(k-1). - Vaclav Kotesovec, Aug 19 2015
Convolution of A052847 and A052812. - Vaclav Kotesovec, Aug 19 2015
a(n) ~ 2^(7/18) * (7*Zeta(3))^(1/36) * exp(1/12 - Pi^4/(336*Zeta(3)) - Pi^2 * n^(1/3) / (2^(5/3)*(7*Zeta(3))^(1/3)) + 3/2 * (7*Zeta(3)/2)^(1/3) * n^(2/3)) / (A * sqrt(3) * n^(19/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 19 2015

A086666 a(n) = sigma_2(n) - sigma_1(n).

Original entry on oeis.org

0, 2, 6, 14, 20, 38, 42, 70, 78, 112, 110, 182, 156, 226, 236, 310, 272, 416, 342, 504, 468, 574, 506, 790, 620, 808, 780, 994, 812, 1228, 930, 1302, 1172, 1396, 1252, 1820, 1332, 1750, 1644, 2120, 1640, 2404, 1806, 2478, 2288, 2578, 2162, 3286, 2394, 3162
Offset: 1

Views

Author

Jon Perry, Jul 27 2003

Keywords

Comments

Total area of all distinct L X W rectangles such that s + t = n, 1 <= s <= t, s | n, L = n/s and W = t/s. - Wesley Ivan Hurt, Aug 01 2025

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[2,n]-DivisorSigma[1,n],{n,50}] (* Harvey P. Dale, Aug 01 2020 *)
  • PARI
    a(n) = sigma(n,2)-sigma(n,1);
    
  • PARI
    a(n) = my(f = factor(n)); sigma(f, 2) - sigma(f); \\ Amiram Eldar, Jan 01 2025

Formula

G.f.: Sum_{n>=1} n*(n-1) * x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k-1)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 21 2018
From Peter Bala, Jan 21 2021: (Start)
a(n) = 2*A069153(n).
G.f.: A(x) = Sum_{n >= 1} 2*x^(2*n)/(1 - x^n)^3.
A faster converging series: A(x) = Sum_{n >= 1} x^(n^2)*( n*(n-1)*x^(3*n) - (n^2 + n - 2)*x^(2*n) + n*(3 - n)*x^n + n*(n - 1) )/(1 - x^n)^3 - differentiate equation 5 in Arndt twice w.r.t x and set x = 1. (End)
From Amiram Eldar, Jan 01 2025: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-2) - zeta(s-1)).
Sum_{k=1..n} a(k) ~ (zeta(3)/3) * n^3. (End)
a(n) = Sum_{d|n} d*(d-1). - Wesley Ivan Hurt, Aug 01 2025

A081285 Table of coefficients of polynomials f_n(q) defined by 1/Product_{i>=1} (1-a q^i)^i = Sum_{n>=0} a^n q^n f_n(q) / ((q)n)^2, where (x)_n is the q-Pochhammer symbol, defined to be Product{i=0..n-1} (1-x q^i).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2, 4, 2, 4, 2, 4, 2, 1, 0, 1, 1, 0, 1, 2, 4, 6, 7, 8, 12, 12, 14, 12, 12, 8, 7, 6, 4, 2, 1, 0, 1, 1, 0, 1, 2, 4, 6, 12, 12, 21, 26, 37, 40, 55, 52, 61, 60, 61, 52, 55, 40, 37, 26, 21, 12, 12, 6, 4, 2, 1, 0, 1, 1, 0, 1, 2, 4, 6, 12, 18, 26, 38, 57, 76
Offset: 0

Views

Author

Dean Hickerson, using information supplied by Moshe Shmuel Newman and Richard Stanley, Mar 15 2003

Keywords

Comments

f_n has degree n(n-1), so n-th row of table has n(n-1)+1 entries. Each row is palindromic. The sum of the terms in the n-th row is n!. The first n+1 terms of the n-th row are the same as the first n terms of A052847.
The 'major index' maj(p) of a permutation p = a_1 a_2 ... a_n is the sum of all i such that a_i > a_(i+1). f_n(q) = Sum_p q^(maj(p)+maj(p^(-1))), where the sum is over all permutations of {1,2,...,n}.

Examples

			f_0 = f_1 = 1, f_2 = 1+q^2, f_3 = 1+q^2+2q^3+q^4+q^6, so sequence begins 1; 1; 1,0,1; 1,0,1,2,1,0,1; ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; Exercise 4.20.

Crossrefs

Row sums give A000142.
Cf. A052847.

Programs

  • Maple
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
          add(b(u-j, o+j-1)*x^(-u), j=1..u)+
          add(b(u+j-1, o-j)*x^( o), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Apr 28 2018
  • Mathematica
    qpoch[x_, n_] := Product[1-x*q^i, {i, 0, n-1}]; f[0]=1; f[n_] := f[n]=Together[Sum[ -(-1)^r q^Binomial[r, 2] qpoch[q^(n-r+1), r-1]*qpoch[q^(r+1), n-r]/qpoch[q, n-r] f[n-r], {r, 1, n}]]; Join@@Table[CoefficientList[f[n], q], {n, 0, 7}]

Formula

f_n(q) = Sum_{r=1..n} (-1)^(r+1) q^(r(r-1)/2) (q)(n-1) (q)_n / ((q)(r) ((q)(n-r))^2) f(n-r)(q) for n>=1.

A319110 Expansion of Product_{k>=1} 1/(1 - (k - 1)*x^k).

Original entry on oeis.org

1, 0, 1, 2, 4, 6, 13, 18, 37, 56, 101, 152, 285, 410, 713, 1118, 1830, 2780, 4618, 6934, 11278, 17092, 26894, 40822, 64435, 96372, 149299, 225104, 345131, 515394, 788176, 1169962, 1772957, 2632458, 3950365, 5849260, 8748993, 12867848, 19135894, 28126614, 41598695
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
           0^n, b(n, i-1)+(i-1)*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Aug 19 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - (k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[(j - 1)^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d - 1)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j - 1)^k*x^(j*k)/k).
From Vaclav Kotesovec, Sep 11 2018: (Start)
a(n) ~ c * 2^(2*n/5), where
c = 28108804.248904780960402246466460350520790117596512766842168... if mod(n,5) = 0
c = 28108804.010850549080284030388905319123062152339902207992657... if mod(n,5) = 1
c = 28108804.067769166625741650205643600577757560110636366636106... if mod(n,5) = 2
c = 28108804.083581827971851596540314974909801290757084687583764... if mod(n,5) = 3
c = 28108804.058853893104368046896759214442695016905368229405793... if mod(n,5) = 4
(End)

A319108 Expansion of Product_{k>=1} (1 - x^k)^(k-1).

Original entry on oeis.org

1, 0, -1, -2, -3, -2, -1, 4, 8, 14, 17, 18, 9, -4, -27, -58, -88, -114, -122, -106, -48, 48, 200, 376, 577, 746, 862, 840, 646, 208, -486, -1450, -2622, -3888, -5086, -5950, -6204, -5492, -3547, -44, 5036, 11732, 19582, 28034, 35932, 42042, 44519, 41660, 31450, 12382, -16721
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2018

Keywords

Comments

Convolution of A000041 and A073592.
Convolution inverse of A052847.

Crossrefs

Programs

  • Maple
    a:=series(mul((1-x^k)^(k-1),k=1..100),x=0,51): seq(coeff(a,x,n),n=0..50); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^k)^(k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - DivisorSigma[2, k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (1 - d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]

Formula

G.f.: exp(Sum_{k>=1} (sigma_1(k) - sigma_2(k))*x^k/k), where sigma_1(k) = sum of divisors of k (A000203) and sigma_2(k) = sum of squares of divisors of k (A001157).

A385053 Number of non-isomorphic simple games with n players and one minimal winning vector.

Original entry on oeis.org

1, 3, 7, 15, 29, 55, 99, 176, 305, 522, 877, 1461, 2399, 3905, 6291, 10055, 15929, 25063, 39139, 60742, 93665, 143619, 218967, 332157, 501303, 753079, 1126155, 1676908, 2486641, 3673000, 5404711, 7924206, 11577465, 16858381, 24468317, 35402812, 51068703
Offset: 1

Views

Author

Dani Samaniego Vidal, Jun 16 2025

Keywords

Comments

a(n) is also the number of non-isomorphic monotonic boolean functions with one minimal model.

Crossrefs

Second differences appear to be A052847.

Programs

  • Mathematica
    sgnvnn[0,0] = 1; sgnvnn[_,0] = 0;
    sgnvnn[n_,t_] := sgnvnn[n,t] = (1/t) Sum[If[Mod[k,l]==0, (k/l-1)sgnvnn[n-k,t-l], 0], {l,t},{k,n}];
    sg[n_,1] := sgnvnn[n,1] + 1;
    sg[n_,2] := sgnvnn[n,2] + 2 Sum[sgnvnn[n-i,1],{i,n-2}] + n - 1;
    sg[n_,t_] := sgnvnn[n,t] + 2 Sum[sgnvnn[n-i,t-1],{i,n-2}] + Sum[(i-1) sgnvnn[n-i,t-2],{i,2,n-2}];
    a[n_] := Sum[sg[n,t], {t,Quotient[n,2]+1}];
    Table[a[n], {n,50}] (* Andrei Zabolotskii, Jul 24 2025 *)

Extensions

Edited and extended by Andrei Zabolotskii, Jul 24 2025
Previous Showing 21-29 of 29 results.