cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A079600 a(n) = A000670(p-1)/p with p = prime(n+1).

Original entry on oeis.org

1, 15, 669, 9295233, 2160889815, 312685569528315, 178186034908255017, 111949757382747408023661, 217157312584485035638564618459815, 367857057871350983346531103102738773, 3897277863558255935901648057010997772527380815
Offset: 1

Views

Author

Benoit Cloitre, Jan 28 2003

Keywords

Crossrefs

Programs

  • Maple
    N:= 60: # to use primes <= N
    M:= numtheory:-pi(N):
    L:=  [seq(ithprime(i+1)-1, i=1..M-1)]:
    S:= series(1/(2-exp(x)), x=0, N+1):
    seq(coeff(S,x,L[i])*L[i]!/(L[i]+1), i=1..M-1); # Robert Israel, Mar 30 2016
  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1; a[p_] := Fubini[p-1, 1]/p; Table[ a[p], {p, Prime[Range[2, 11]]}] (* Jean-François Alcover, Mar 30 2016 *)

Formula

a(n) = A052882(p)/p^2 with p = prime(n+1).

A087301 a(n) = n!*Sum_{i=1..n-1} (-1)^(i+1)/i.

Original entry on oeis.org

2, 3, 20, 70, 564, 3108, 30624, 230256, 2705760, 25771680, 352805760, 4067556480, 63651813120, 861371884800, 15176802816000, 235775183616000, 4620563523072000, 81032645804544000, 1748700390205440000
Offset: 2

Views

Author

Vladeta Jovovic, Oct 20 2003

Keywords

Comments

Stirling transform of A052882(n)=[0,2,9,52,375,...] is a(n+1)=[0,2,3,20,...]. - Michael Somos, Mar 04 2004

Crossrefs

Programs

  • Mathematica
    Rest[Table[n!Sum[(-1)^(i+1)/i,{i,n-1}],{n,20}]] (* Harvey P. Dale, Oct 24 2011 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(log(1+x+x*O(x^n))*x/(1-x),n))

Formula

E.g.f.: x*log(1+x)/(1-x). a(n) = 1/2*(-1)^n*n!*(2*(-1)^n*log(2)+Psi(1/2+1/2*n)-Psi(1/2*n)).
a(n) ~ n! * log(2). - Vaclav Kotesovec, Jul 01 2018

A154961 2nd column of A154960.

Original entry on oeis.org

0, 1, 3, 25, 340, 7026, 204862, 8007602, 404077632, 25569505628, 1982619985192, 184861494417920, 20406183592852460, 2631875641089358912, 392163247878318070876, 66855512799464487146588, 12929525365915201064027856, 2815456378791384288128303192
Offset: 1

Views

Author

Mats Granvik, Jan 18 2009

Keywords

Comments

A052882 might have similarities with this sequence because A052882 is the 2nd column in table A154921 which is similar to A154960.

Crossrefs

Programs

  • PARI
    { (matrix(30,30,i,j,(-1)^(i!=j)*stirling(i,j,2))^(-1))[,2] } \\ Max Alekseyev, Jun 17 2011

Extensions

More terms from Max Alekseyev, Jun 17 2011

A293860 a(0) = 0, a(1) = 1; a(n) = n! * [x^n] exp(n*x)*Sum_{k=1..n-1} a(k)*x^k/k!.

Original entry on oeis.org

0, 1, 4, 63, 1648, 65075, 3629196, 272106555, 26418426560, 3225539263995, 483800514119500, 87459323696213843, 18755503692216214320, 4707783117485450859987, 1367396879443428912151724, 455052324991418691450493275, 172012620929344322616321833728
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 17 2017

Keywords

Examples

			E.g.f. A(x) = x + 4*x^2/2! + 63*x^3/3! + 1648*x^4/4! + 65075*x^5/5! + 3629196*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = n! SeriesCoefficient[Exp[n x] Sum[a[k] x^k/k!, {k, 1, n - 1}], {x, 0, n}]; a[0] = 0; a[1] = 1; Table[a[n], {n, 0, 16}]

Formula

a(n) ~ c * n^(2*n + 1 + log(2)/2) / (log(2)^n * exp(2*n)), where c = 2.715081809041541547553157767788588016035268429424586978200936... - Vaclav Kotesovec, Oct 18 2017

A308475 a(1) = 1; a(n) = Sum_{k=1..n-1, gcd(n,k) = 1} binomial(n,k)*a(k).

Original entry on oeis.org

1, 2, 9, 40, 315, 1896, 21651, 191360, 2546487, 28064080, 488517183, 5879603280, 124673371719, 1928346159572, 42684093159480, 754925802649360, 20289814995554811, 366300418631427144, 11352374441063693655, 250187625076714423520, 7774760839170720287739
Offset: 1

Views

Author

Ilya Gutkovskiy, May 29 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
    if n=1 then 1;
    else add( `if`(gcd(n,j)=1, binomial(n,j)*a(j), 0), j=1..n-1);
    end if; end proc;
    seq(a(n), n = 1..30); # G. C. Greubel, Mar 08 2021
  • Mathematica
    a[n_] := Sum[If[GCD[n, k] == 1, Binomial[n, k] a[k], 0], {k, 1, n - 1}]; a[1] = 1; Table[a[n], {n, 1, 21}]
  • Sage
    @CachedFunction
    def a(n):
        if n==1: return 1
        else: return sum( kronecker_delta(gcd(n,j), 1)*binomial(n,j)*a(j) for j in (1..n-1) )
    [a(n) for n in (1..30)] # G. C. Greubel, Mar 08 2021

A111154 a(n) = sum(k=0,n,B_k*A000629(k)*A000629(n-k)) where B_k is the k-th Bernoulli number.

Original entry on oeis.org

1, 1, 5, 22, 125, 948, 8627, 86618, 970649, 13105048, 206672615, 3084750894, 39005776445, 972651041372, 45030832321499, 489627529809250, -65060172242461567, 100399556385989760, 378285729309697789679, 921583343151423434486, -2826260367937145199562267
Offset: 0

Views

Author

Benoit Cloitre, Oct 19 2005

Keywords

Crossrefs

Cf. A052882.

A352863 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+3,k+3) * a(k).

Original entry on oeis.org

1, 4, 30, 260, 2625, 30296, 393372, 5675160, 90062775, 1559197420, 29242803018, 590638256572, 12781663255725, 295040675093360, 7236113219901240, 187911083837928048, 5150869386839932995, 148622674413214927140, 4502761102131604279590, 142914444471765753144820
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 3, k + 3] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 19}]
    nmax = 19; CoefficientList[Series[D[x^3/(3! (2 - Exp[x])), {x, 3}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: d^3/dx^3 ( x^3 / (3!*(2 - exp(x))) ).
a(n) = A000292(n+1) * A000670(n).
Previous Showing 11-17 of 17 results.