A333119
Triangle T read by rows: T(n, k) = (n - k)*(1 - (-1)^k + 2*k)/4, with 0 <= k < n.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 0, 3, 2, 2, 0, 4, 3, 4, 2, 0, 5, 4, 6, 4, 3, 0, 6, 5, 8, 6, 6, 3, 0, 7, 6, 10, 8, 9, 6, 4, 0, 8, 7, 12, 10, 12, 9, 8, 4, 0, 9, 8, 14, 12, 15, 12, 12, 8, 5, 0, 10, 9, 16, 14, 18, 15, 16, 12, 10, 5, 0, 11, 10, 18, 16, 21, 18, 20, 16, 15, 10, 6
Offset: 1
n\k| 0 1 2 3 4 5
---+------------
1 | 0
2 | 0 1
3 | 0 2 1
4 | 0 3 2 2
5 | 0 4 3 4 2
6 | 0 5 4 6 4 3
...
For n = 4 the matrix M(4) is
0 1 1 2
1 0 1 1
1 1 0 1
2 1 1 0
and therefore T(4, 0) = 0, T(4, 1) = 3, T(4, 2) = 2 and T(4, 3) = 2.
-
T[n_,k_]:=(n-k)(1-(-1)^k+2k)/4; Flatten[Table[T[n,k],{n,1,12},{k,0,n-1}]] (* or *)
r[n_] := Table[SeriesCoefficient[y*(x*(2 + y + y^2) - (1 + y + 2*y^2))/((1 - x)^2 *(1 - y)^3 (1 + y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 12]]
A372602
The maximal exponent in the prime factorization of the largest square dividing n.
Original entry on oeis.org
0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1
-
f[n_] := 2 * Floor[n/2]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
-
s(n) = n \ 2 * 2;
a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);
A128217
Nonnegative integers n such that the square-root of n differs from its nearest integer by less than 1/4.
Original entry on oeis.org
0, 1, 4, 5, 8, 9, 10, 15, 16, 17, 18, 23, 24, 25, 26, 27, 34, 35, 36, 37, 38, 39, 46, 47, 48, 49, 50, 51, 52, 61, 62, 63, 64, 65, 66, 67, 68, 77, 78, 79, 80, 81, 82, 83, 84, 85, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125
Offset: 1
-
a128217 n = a128217_list !! (n-1)
a128217_list = filter f [0..] where
f x = 4 * abs (root - fromIntegral (round root)) < 1
where root = sqrt $ fromIntegral x
-- Reinhard Zumkeller, Jun 20 2015
-
nsrQ[n_]:=Module[{sr=Sqrt[n]},Abs[First[sr-Nearest[{Floor[sr], Ceiling[sr]},sr]]]<1/4]; Select[Range[0,150],nsrQ] (* Harvey P. Dale, Aug 19 2011 *)
-
from itertools import count, islice
from math import isqrt
def A128217_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:(m:=n<<4)<(k:=(isqrt(n)<<2)+1)**2 or m>(k+2)**2, count(max(startvalue,0)))
A128217_list = list(islice(A128217_gen(),40)) # Chai Wah Wu, Jun 06 2025
A142961
Irregular triangle read by rows: coefficients of polynomials related to a family of convolutions of certain central binomial sequences.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, -2, 1, 30, 35, -10, 5, 70, 63, 8, -2, -75, 35, 315, 231, 56, -14, -245, 105, 693, 429, -272, 36, 2268, -525, -5880, 2310, 12012, 6435, -2448, 324, 9660, -2037, -16632, 6006, 25740, 12155, 3968, -304, -31260, 3840, 73395, -14091, -90090, 30030, 109395, 46189, 43648, -3344
Offset: 0
The irregular triangle a(k, p) begins:
k\p 0 1 2 3 4 5 ...
0: 1
1: 1
2: 1 3
3: 3 5
4: 2 -1 30 35
5: -10 5 70 63
6: 8 -2 -75 35 315 231
...
k=3: Sigma(3, n) = Sum_{p=0..n} p^3 * binomial(2*p, p) * binomial(2*(n-p), n-p) = (4*n/16)*n^2*(3 + 5*n), for n >= 0. This is the sequence {0, 2, 52, 648, 5888, 44800, 304128, 1906688, 11272192, 63700992, ...}.
A262666
Irregular table read by rows: T(n,k) is the number of binary bisymmetric n X n matrices with exactly k 1's; n>=0, 0<=k<=n^2.
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 4, 0, 8, 0, 12, 0, 14, 0, 12, 0, 8, 0, 4, 0, 1, 1, 1, 4, 4, 10, 10, 20, 20, 31, 31, 40, 40, 44, 44, 40, 40, 31, 31, 20, 20, 10, 10, 4, 4, 1, 1, 1, 0, 6, 0, 21, 0, 56, 0, 120, 0, 216, 0, 336, 0, 456, 0
Offset: 0
Irregular table begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 1 1
2: 1 0 2 0 1
3: 1 1 2 2 2 2 2 2 1 1
4: 1 0 4 0 8 0 12 0 14 0 ...
5: 1 1 4 4 10 10 20 20 31 31 ...
...
-
T:= n-> seq(coeff((t->(1+x^2)^(n-t)*(1+x)^t*(1+x^4)^
(((n-2)*n+t)/4))(irem(n, 2)), x, i), i=0..n^2):
seq(T(n), n=0..6); # Alois P. Heinz, Sep 27 2015
A268819
Column 32769 of array A269158: a(n) = F(n,65537), function F as defined in A269158.
Original entry on oeis.org
0, 98305, 3, 0, 6, 98306, 2, 98305, 12, 98311, 14, 3, 1, 98307, 9, 0, 24, 98317, 24, 6, 16, 98319, 27, 98306, 0, 98304, 23, 2, 30, 98312, 2, 98305, 48, 98329, 0, 12, 52, 98329, 6, 98311, 3, 98321, 3, 14, 14, 98330, 3, 3, 41, 98305, 43, 1, 4, 98326, 45, 98307, 6, 98335, 43, 9, 27, 98307, 19, 0, 27, 98353, 2, 24, 100, 98305, 1
Offset: 1
A275730
Square array A(n,d): overwrite with zero the digit at position d from right (indicating radix d+2) in the factorial base representation of n, then convert back to decimal, read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), etc.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 0, 1, 0, 2, 0, 1, 2, 1, 4, 0, 1, 2, 3, 0, 4, 0, 1, 2, 3, 4, 1, 6, 0, 1, 2, 3, 4, 5, 6, 6, 0, 1, 2, 3, 4, 5, 0, 7, 8, 0, 1, 2, 3, 4, 5, 6, 1, 6, 8, 0, 1, 2, 3, 4, 5, 6, 7, 2, 7, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 3, 6, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 7, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 12, 12, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 13, 14
Offset: 0
Columns 0-4 of rows 0 - 24 of the array:
0, 0, 0, 0, 0, ... [No matter which digit of zero we clear, it stays zero forever]
0, 1, 1, 1, 1 ... [When clearing the least significant digit (pos. 0) of one, "1", we get zero, and clearing any other digit past the most significant digit keeps one as one]
2, 0, 2, 2, 2, ... [Clearing the least significant digit of 2, "10", doesn't affect it, but clearing the digit-1 zeros the whole number].
2, 1, 3, 3, 3, ... [Clearing the least significant factorial base digit of 3 ("11") gives "10", 2, clearing the digit-1 gives "01" = 1, and clearing any digit past the most significant keeps "11" as it is, 3].
4, 0, 4, 4, 4
4, 1, 5, 5, 5
6, 6, 0, 6, 6
6, 7, 1, 7, 7
8, 6, 2, 8, 8
8, 7, 3, 9, 9
10, 6, 4, 10, 10
10, 7, 5, 11, 11
12, 12, 0, 12, 12
12, 13, 1, 13, 13
14, 12, 2, 14, 14
14, 13, 3, 15, 15
16, 12, 4, 16, 16
16, 13, 5, 17, 17
18, 18, 0, 18, 18
18, 19, 1, 19, 19
20, 18, 2, 20, 20
20, 19, 3, 21, 21
22, 18, 4, 22, 22
22, 19, 5, 23, 23
24, 24, 24, 0, 24
...
A316354
Triangle read by rows: T(1,1)=1, T(n,k) = T(n,k+1)+T(n-k,max(2*floor(k/2)-1,1)) and T(n,k) = 0 if k > A316355(n).
Original entry on oeis.org
1, 1, 2, 1, 4, 2, 1, 7, 3, 1, 13, 6, 2, 24, 11, 4, 45, 21, 8, 1, 84, 39, 15, 2, 1, 156, 72, 27, 3, 1, 291, 135, 51, 6, 2, 543, 252, 96, 12, 4, 1013, 470, 179, 23, 8, 1889, 876, 333, 42, 15, 3524, 1635, 622, 79, 28, 1, 6575, 3051, 1162, 149, 53, 2, 1, 12266, 5691
Offset: 1
n\k | 1 2 3 4 5
----+-------------------
1 | 1;
2 | 1;
3 | 2, 1;
4 | 4, 2, 1;
5 | 7, 3, 1;
6 | 13, 6, 2;
7 | 24, 11, 4;
8 | 45, 21, 8, 1;
9 | 84, 39, 15, 2, 1;
10 | 156, 72, 27, 3, 1;
A346663
The number of nonreal roots of Sum_{k=0..n} prime(k+1)*x^k.
Original entry on oeis.org
0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 16, 16, 18, 18, 20, 20, 22, 22, 24, 24, 26, 26, 28, 28, 30, 30, 32, 32, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 46, 46, 48, 48, 50, 50, 52, 52, 54, 54, 56, 56, 58, 58, 60, 60, 62, 62, 64, 64, 66, 66, 68, 68, 70, 70, 72, 72
Offset: 0
A360764
Number T(n,k) of sets of nonempty strict integer partitions with a total of k parts and total sum of n; triangle T(n,k), n>=0, 0<=k<=max(i:T(n,i)>0), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 4, 2, 0, 1, 4, 6, 1, 0, 1, 6, 8, 4, 0, 1, 6, 13, 9, 1, 0, 1, 8, 18, 16, 6, 0, 1, 8, 24, 29, 13, 2, 0, 1, 10, 30, 43, 29, 6, 0, 1, 10, 39, 64, 52, 19, 1, 0, 1, 12, 46, 89, 89, 42, 7, 0, 1, 12, 56, 122, 139, 85, 22, 1
Offset: 0
T(6,1) = 1: {[6]}.
T(6,2) = 4: {[1],[5]}, {[2],[4]}, {[1,5]}, {[2,4]}.
T(6,3) = 6: {[1,2,3]}, {[1],[1,4]}, {[1],[2,3]}, {[2],[1,3]}, {[3],[1,2]}, {[1],[2],[3]}.
T(6,4) = 1: {[1],[2],[1,2]}.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 2;
0, 1, 2, 1;
0, 1, 4, 2;
0, 1, 4, 6, 1;
0, 1, 6, 8, 4;
0, 1, 6, 13, 9, 1;
0, 1, 8, 18, 16, 6;
0, 1, 8, 24, 29, 13, 2;
0, 1, 10, 30, 43, 29, 6;
0, 1, 10, 39, 64, 52, 19, 1;
...
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i-1)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i), k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..14);
-
h[n_, i_] := h[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, h[n, i - 1] + x*h[n - i, Min[n - i, i - 1]]]]];
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i<0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Coefficient[h[n, n], x, i], k], {k, 0, j}]]]];
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*g[i, i, j], {j, 0, n/i}]]]] ;
T[n_] := CoefficientList[b[n, n], x];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Nov 17 2023, after Alois P. Heinz *)
Comments