cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A113953 A Jacobsthal triangle.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 4, 1, 0, 0, 4, 6, 1, 0, 0, 0, 12, 8, 1, 0, 0, 0, 8, 24, 10, 1, 0, 0, 0, 0, 32, 40, 12, 1, 0, 0, 0, 0, 16, 80, 60, 14, 1, 0, 0, 0, 0, 0, 80, 160, 84, 16, 1, 0, 0, 0, 0, 0, 32, 240, 280, 112, 18, 1, 0, 0, 0, 0, 0, 0, 192, 560, 448, 144, 20, 1, 0, 0, 0, 0, 0, 0, 64, 672, 1120, 672, 180, 22, 1
Offset: 0

Views

Author

Paul Barry, Nov 09 2005

Keywords

Comments

Rows sums are the Jacobsthal numbers A001045(n+1).
Antidiagonal sums are the Padovan-Jacobsthal numbers A052947.
Inverse is (1,xc(-2x)), c(x) the g.f. of A000108, with general term k*C(2n-k-1,n-k)(-2)^(n - k)/n.
Triangle read by rows given by (0, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2013

Examples

			Rows begin
  1;
  0,  1;
  0,  2,  1;
  0,  0,  4,  1;
  0,  0,  4,  6,  1;
  0,  0,  0, 12,  8,  1;
  0,  0,  0,  8, 24, 10,  1;
		

Crossrefs

A signed version is A110509.

Formula

G.f.: 1/(1-xy(1+2x)).
Riordan array (1, x(1+2x)).
T(n,k) = 2^(n-k)*binomial(k, n-k).
T(n,k) = A026729(n,k)*2^(n-k). - Philippe Deléham, Nov 22 2006
T(n,k) = T(n-1,k-1) + 2*T(n-2,k-1), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 01 2013

A106855 Expansion of 1/(1-x^2(1-3x)).

Original entry on oeis.org

1, 0, 1, -3, 1, -6, 10, -9, 28, -39, 55, -123, 172, -288, 541, -804, 1405, -2427, 3817, -6642, 11098, -18093, 31024, -51387, 85303, -144459, 239464, -400368, 672841, -1118760, 1873945, -3137283, 5230225, -8759118, 14642074, -24449793, 40919428, -68376015, 114268807, -191134299, 319396852
Offset: 0

Views

Author

Paul Barry, May 08 2005

Keywords

Comments

Diagonal sums of Riordan array (1,x(1-3x)).

Crossrefs

Formula

G.f.: 1/(1-x^2+3x^3); a(n)=a(n-2)-3a(n-3); a(n)=sum{k=0..floor(n/2), (-1)^n*binomial(k, n-2k)*3^(n-2k)}.

A110291 Riordan array (1/(1-x), x*(1+2*x)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 3, 9, 7, 1, 1, 3, 9, 19, 9, 1, 1, 3, 9, 27, 33, 11, 1, 1, 3, 9, 27, 65, 51, 13, 1, 1, 3, 9, 27, 81, 131, 73, 15, 1, 1, 3, 9, 27, 81, 211, 233, 99, 17, 1, 1, 3, 9, 27, 81, 243, 473, 379, 129, 19, 1, 1, 3, 9, 27, 81, 243, 665, 939, 577, 163, 21, 1
Offset: 0

Views

Author

Paul Barry, Jul 18 2005

Keywords

Comments

Inverse is A110292.

Examples

			Rows begin
  1;
  1, 1;
  1, 3, 1;
  1, 3, 5,  1;
  1, 3, 9,  7,  1;
  1, 3, 9, 19,  9,   1;
  1, 3, 9, 27, 33,  11,  1;
  1, 3, 9, 27, 65,  51, 13,  1;
  1, 3, 9, 27, 81, 131, 73, 15, 1;
		

Crossrefs

Cf. A000975 (row sums), A052947 (diagonal sums).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    F:= func< k | Coefficients(R!( x^k*(1+2*x)^k/(1-x) )) >;
    A110291:= func< n,k | F(k)[n-k+1] >;
    [A110291(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 05 2023
    
  • Mathematica
    F[k_]:= CoefficientList[Series[x^k*(1+2*x)^k/(1-x), {x,0,40}], x];
    A110291[n_, k_]:= F[k][[n+1]];
    Table[A110291[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2023 *)
  • SageMath
    def p(k,x): return x^k*(1+2*x)^k/(1-x)
    def A110291(n,k): return ( p(k,x) ).series(x, 30).list()[n]
    flatten([[A110291(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 05 2023

Formula

T(n, k) = [x^n]( x^k*(1+2*x)^k/(1-x) ).
Sum_{k=0..n} T(n, k) = A000975(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A052947(n+1).
From G. C. Greubel, Jan 05 2023: (Start)
T(n, 0) = T(n, n) = 1.
T(n, n-1) = A005408(n-1).
T(2*n, n) = T(2*n+1, n) = A000244(n).
T(2*n, n+1) = A066810(n+1).
T(2*n, n-1) = A000244(n-1).
T(2*n+1, n+1) = A001047(n+1).
Sum_{k=0..n} (-1)^k * T(n, k) = A077912(n).
Sum_{k=0..n} 2^k * T(n, k) = A014335(n+2).
Sum_{k=0..n} 3^k * T(n, k) = A180146(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A077890(n). (End)

Extensions

a(30) and following corrected by Georg Fischer, Oct 11 2022

A167434 Diagonal sums of the Riordan array (1-4*x+4*x^2, x*(1-2*x)) (A167431).

Original entry on oeis.org

1, -4, 5, -6, 13, -16, 25, -42, 57, -92, 141, -206, 325, -488, 737, -1138, 1713, -2612, 3989, -6038, 9213, -14016, 21289, -32442, 49321, -75020, 114205, -173662, 264245, -402072, 611569, -930562, 1415713, -2153700, 3276837, -4985126, 7584237
Offset: 0

Views

Author

Paul Barry, Nov 03 2009

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,-4,5]; [n le 3 select I[n] else Self(n-2) - 2*Self(n-3): n in [1..40]]; // G. C. Greubel, Jun 27 2018
  • Mathematica
    LinearRecurrence[{0, 1, -2}, {1, -4, 5}, 100] (* G. C. Greubel, Jun 13 2016 *)
    CoefficientList[Series[(1-4x+4x^2)/(1-x^2+2x^3),{x,0,40}],x] (* Harvey P. Dale, Nov 08 2022 *)
  • PARI
    x='x+O('x^40); Vec((1-4*x+4*x^2)/(1-x^2+2*x^3)) \\ G. C. Greubel, Jun 27 2018
    

Formula

G.f.: (1-2*x)^2/(1-x^2+2*x^3).
a(n) = (-1)^n*A052947(n+4). - R. J. Mathar, Jun 24 2024

A373080 a(n) is the number of binary strings of length n not containing the substrings 0000, 0001, 0011, 0111, 1111.

Original entry on oeis.org

1, 2, 4, 8, 11, 18, 28, 40, 64, 96, 144, 224, 336, 512, 784, 1184, 1808, 2752, 4176, 6368, 9680, 14720, 22416, 34080, 51856, 78912, 120016, 182624, 277840, 422656, 643088, 978336, 1488400, 2264512, 3445072, 5241312, 7974096, 12131456, 18456720, 28079648
Offset: 0

Views

Author

Miquel A. Fiol, Jun 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 2}, {1, 2, 4, 8, 11, 18, 28}, 50] (* Paolo Xausa, Jun 24 2024 *)

Formula

a(n) = a(n-2) + 2*a(n-3) for n >= 7.
G.f.: -(x+1)^2*(x^2+1)^2/(2*x^3+x^2-1). - Alois P. Heinz, Jun 03 2024

A099492 A Chebyshev transform of the Padovan-Jacobsthal numbers.

Original entry on oeis.org

1, 0, 0, 2, -1, -4, 5, 2, -16, 12, 27, -56, -3, 140, -144, -186, 547, -140, -1175, 1606, 1120, -5096, 2775, 9360, -16807, -4584, 45664, -38070, -69657, 167276, -11347, -393142, 450896, 467108, -1595725, 586584, 3235221, -4905692, -2556720, 14641550, -9572661, -25171740, 50306641, 6820750
Offset: 0

Views

Author

Paul Barry, Oct 19 2004

Keywords

Comments

A Chebyshev transform of A052947, which has g.f. 1/(1-x^2-2x^3). The image of G(x) under the Chebyshev transform is (1/(1+x^2))G(x/(1+x^2)).

Programs

  • Mathematica
    LinearRecurrence[{0,-2,2,-2,0,-1},{1,0,0,2,-1,-4},50] (* Harvey P. Dale, Dec 20 2015 *)

Formula

G.f.: (1+x^2)^2/(1+2x^2-2x^3+2x^4+x^6); a(n)=-2a(n-2)+2a(n-3)-2a(n-4)-a(n-6); a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*sum{j=0..floor((n-2k)/2), C(j, n-2k-2j)2^(n-2k-2j)}}.

A122439 Expansion of 1/(1-2x-x^2+4x^4).

Original entry on oeis.org

1, 2, 5, 12, 25, 54, 113, 232, 477, 970, 1965, 3972, 8001, 16094, 32329, 64864, 130053, 260594, 521925, 1044988, 2091689, 4185990, 8375969, 16757976, 33525165, 67064346, 134149981, 268332404, 536714129, 1073503278, 2147120761
Offset: 0

Views

Author

Paul Barry, Sep 05 2006

Keywords

Comments

Diagonal sums of number triangle A122438. Convolution of A052947 and 2^n.

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - 2x - x^2 + 4x^4), {x, 0, 31}], x] (* Robert G. Wilson v, Sep 14 2006 *)
    LinearRecurrence[{2,1,0,-4},{1,2,5,12},40] (* Harvey P. Dale, Jul 30 2024 *)

Extensions

More terms from Robert G. Wilson v, Sep 14 2006

A077882 Expansion of x/((1-x)*(1-x^2-2*x^3)).

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 9, 14, 20, 33, 49, 74, 116, 173, 265, 406, 612, 937, 1425, 2162, 3300, 5013, 7625, 11614, 17652, 26865, 40881, 62170, 94612, 143933, 218953, 333158, 506820, 771065, 1173137, 1784706, 2715268, 4130981, 6284681, 9561518, 14546644, 22130881, 33669681
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n+1) gives diagonal sums of Riordan array (1/(1-x),x*(1+2*x)) and partial sums of A052947. - Paul Barry, Jul 18 2005

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[2] = 1; a[3] = 2; a[n_Integer?Positive] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] - 2a[n - 4]; aa = Table[a[n], {n, 0, 42}] (* Roger L. Bagula, Mar 25 2005 *)
    CoefficientList[Series[x/((1-x)(1-x^2-2x^3)),{x,0,50}],x] (* or *) LinearRecurrence[{1,1,1,-2},{0,1,1,2},50] (* Harvey P. Dale, Aug 17 2017 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)-2*a(n-4). - Roger L. Bagula, Mar 25 2005
a(n+1) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} C(j, k-2*j)*2^(k-2*j). - Paul Barry, Jul 18 2005

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A104579 A Padovan-Jacobsthal convolution triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 4, 3, 0, 1, 4, 3, 6, 4, 0, 1, 5, 12, 6, 8, 5, 0, 1, 6, 16, 24, 10, 10, 6, 0, 1, 13, 24, 34, 40, 15, 12, 7, 0, 1, 16, 53, 60, 60, 60, 21, 14, 8, 0, 1, 25, 72, 135, 120, 95, 84, 28, 16, 9, 0, 1, 42, 126, 200, 275, 210, 140, 112, 36, 18, 10, 0, 1, 57, 220, 381
Offset: 0

Views

Author

Paul Barry, Mar 16 2005

Keywords

Comments

First column is A052947. Row sums are A077947. Diagonal sums are A052907.

Examples

			Rows begin {1},{0,1},{1,0,1},{2,2,0,1},{1,4,3,0,1},{4,3,6,4,0,1},..
		

Formula

Riordan array (1/(1-x^2-2x^3), x/(1-x^2-2x^3))
T(n,k) = T(n-1,k-1)+T(n-2,k)+2*T(n-3,k), T(0,0)=1, T(n,k)=0 if k>n or if k<0. - Philippe Deléham, Jan 08 2014

A134271 a(n) = a(n-2) + 2*a(n-3), n > 3; with a(0)=0, a(1)=1, a(2)=2, a(3)=0.

Original entry on oeis.org

0, 1, 2, 0, 4, 4, 4, 12, 12, 20, 36, 44, 76, 116, 164, 268, 396, 596, 932, 1388, 2124, 3252, 4900, 7500, 11404, 17300, 26404, 40108, 61004, 92916, 141220, 214924, 327052, 497364, 756900, 1151468, 1751628, 2665268, 4054564, 6168524, 9385100
Offset: 0

Views

Author

Paul Curtz, Jan 30 2008

Keywords

Comments

Recurrence in A052947.

Crossrefs

Cf. A078050.

Formula

From R. J. Mathar, Feb 01 2008: (Start)
O.g.f.: 1/2 + (1/2)*(-2*x-5*x^2+1)/(-1+x^2+2*x^3).
a(n) = A052947(n-1) + 2*A052947(n-2) - A052947(n-3). (End)
Previous Showing 11-20 of 20 results.