cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A053128 Binomial coefficients C(2*n-5,6).

Original entry on oeis.org

7, 84, 462, 1716, 5005, 12376, 27132, 54264, 100947, 177100, 296010, 475020, 736281, 1107568, 1623160, 2324784, 3262623, 4496388, 6096454, 8145060, 10737573, 13983816, 18009460, 22957480, 28989675, 36288252, 45057474, 55525372, 67945521, 82598880, 99795696
Offset: 6

Views

Author

Keywords

Comments

a(n) = A053123(n,6), n >= 6; a(n) = 0, n=0..5, (seventh column of shifted Chebyshev's S-triangle, decreasing order).

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-5,6): n in [6..40]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Table[Binomial[2*n-5,6], {n,6,50}] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    for(n=6,50, print1(binomial(2*n-5,6), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-5, 6) if n >= 6 else 0.
G.f.: (7+35*x+21*x^2+x^3)/(1-x)^7.
E.g.f.: (18900 - 16380*x + 6975*x^2 - 1935*x^3 + 390*x^4 - 60*x^5 + 8*x^6)*exp(x)/90. - G. C. Greubel, Aug 26 2018
a(n) = (n-5)*(n-4)*(n-3)*(2*n-9)*(2*n-7)*(2*n-5)/90. - Wesley Ivan Hurt, Mar 25 2020
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=6} 1/a(n) = 667/10 - 96*log(2).
Sum_{n>=6} (-1)^n/a(n) = 273/10 - 6*Pi - 12*log(2). (End)

A053129 Binomial coefficients C(2*n-6,7).

Original entry on oeis.org

8, 120, 792, 3432, 11440, 31824, 77520, 170544, 346104, 657800, 1184040, 2035800, 3365856, 5379616, 8347680, 12620256, 18643560, 26978328, 38320568, 53524680, 73629072, 99884400, 133784560, 177100560, 231917400, 300674088, 386206920, 491796152, 621216192
Offset: 7

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

Formula

a(n) = binomial(2*n-6, 7) if n >= 7 else 0.
a(n) = -A053123(n,7), n >= 7; a(n) := 0, n=0..6, (eighth column of shifted Chebyshev's S-triangle, decreasing order).
a(n) = 8*A000973(n).
G.f.: (8+56*x+56*x^2+8*x^3)/(1-x)^8.
a(n) = (n-6)*(n-5)*(n-4)*(n-3)*(2*n-11)*(2*n-9)*(2*n-7)/315. - Wesley Ivan Hurt, Mar 25 2020
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=7} 1/a(n) = 777/5 - 224*log(2).
Sum_{n>=7} (-1)^(n+1)/a(n) = 441/10 - 14*Pi. (End)

A053130 Binomial coefficients C(2*n-7,8).

Original entry on oeis.org

9, 165, 1287, 6435, 24310, 75582, 203490, 490314, 1081575, 2220075, 4292145, 7888725, 13884156, 23535820, 38608020, 61523748, 95548245, 145008513, 215553195, 314457495, 450978066, 636763050, 886322710, 1217566350, 1652411475, 2217471399, 2944827765, 3872894697
Offset: 8

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-7, 8): n in [8..50]]; // Vincenzo Librandi, Apr 07 2011
    
  • Mathematica
    Table[Binomial[2*n-7,8], {n,8,50}] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    for(n=8,50, print1(binomial(2*n-7,8), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-7, 8) if n >= 8 else 0.
G.f.: (9+84*x+126*x^2+36*x^3+x^4)/(1-x)^9.
a(n) = A053123(n,8), n >= 8; a(n) := 0, n=0..7, (ninth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=8} 1/a(n) = 37276/105 - 512*log(2).
Sum_{n>=8} (-1)^n/a(n) = 592/21 - 16*Pi + 32*log(2). (End)

A053131 Binomial coefficients C(2*n-8,9).

Original entry on oeis.org

10, 220, 2002, 11440, 48620, 167960, 497420, 1307504, 3124550, 6906900, 14307150, 28048800, 52451256, 94143280, 163011640, 273438880, 445891810, 708930508, 1101716330, 1677106640, 2505433700, 3679075400, 5317936260, 7575968400, 10648873950, 14783142660
Offset: 9

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-8,9): n in [9..40]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Binomial[2*Range[9,40]-8,9] (* Harvey P. Dale, Mar 19 2012 *)
  • PARI
    for(n=9,50, print1(binomial(2*n-8,9), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-8, 9) if n >= 9 else 0.
G.f.: (10+120*x+252*x^2+120*x^3+10*x^4)/(1-x)^10.
a(n) = 2*A053133(n).
a(n) = -A053123(n,9), n >= 9; a(n) := 0, n=0..8 (tenth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=9} 1/a(n) = 223611/280 - 1152*log(2).
Sum_{n>=9} (-1)^(n+1)/a(n) = 72*log(2) - 13947/280. (End)

A054322 Fourth unsigned column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

4, 80, 896, 7680, 56320, 372736, 2293760, 13369344, 74711040, 403701760, 2122317824, 10905190400, 54962159616, 272461987840, 1331439861760, 6425271074816, 30666066493440, 144929376436224, 678948430151680
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+4, 3): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n*Binomial[2*n+4, 3], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
    LinearRecurrence[{16,-96,256,-256},{4,80,896,7680},20] (* Harvey P. Dale, Mar 27 2023 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+4, 3) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+4, 3) = -A053125(n+3, 3) = 4*A054329(n).
G.f.: 4*(1+4*x)/(1-4*x)^4.
E.g.f.: (4/3)*(3 +48*x +120*x^2 +64*x^3)*exp(4*x). - G. C. Greubel, Jul 22 2019

A126570 Triangle read by rows: row n gives coefficients (ignoring the alternating signs) of the characteristic polynomial of the n X n matrix with 2's in the main diagonal, 1's in the super- and subdiagonals, and 1 in the upper-right corner, with other elements zeros.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 10, 5, 1, 8, 21, 20, 4, 1, 10, 36, 56, 35, 7, 1, 12, 55, 120, 126, 56, 6, 1, 14, 78, 220, 330, 252, 84, 9, 1, 16, 105, 364, 715, 792, 462, 120, 8, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 11, 1, 20, 171, 816, 2380, 4368, 5005, 3432, 1287, 220, 10
Offset: 0

Views

Author

Gary W. Adamson, Dec 28 2006

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  1, 4, 3;
  1, 6, 10, 5;
  1, 8, 21, 20, 4;
  1, 10, 36, 56, 35, 7;
  1, 12, 55, 120, 126, 56, 6;
  ...
Charpoly of the 4 X 4 matrix [2,1,0,1; 1,2,1,0; 0,1,2,1; 0,0,1,2] = x^4 - 8*x^3 + 21*x^2 - 20*x + 4; with a root sqrt(3)+2.
		

References

  • William G. Harter, Physics Department, University of Arkansas; personal communication.

Crossrefs

Programs

  • Mathematica
    M[i_,j_,n_]:=If[i==j,2,If[Abs[i-j]==1,1,If[j==n&&i==1,1,0]]]; row[0]=1; row[n_]:=Reverse[Abs[CoefficientList[CharacteristicPolynomial[Table[M[i,j,n],{i,n},{j,n}],x],x]]]; Array[row,11,0]//Flatten (* Stefano Spezia, Jun 30 2025 *)

Formula

It seems that for n > 2, T(n, k) = binomial(2n+1-k, k) - [k=n] * (-1)^n. - Andrei Zabolotskii, Jun 29 2025

Extensions

Edited by N. J. A. Sloane, Aug 10 2019
Edited and extended by Andrei Zabolotskii, Jun 29 2025

A360282 Triangle read by rows. T(n, k) = (1/2) * binomial(2*(n - k + 1), n - k + 1) * binomial(2*n - k, k - 1) for n > 0, T(0, 0) = 1.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 0, 10, 12, 3, 0, 35, 60, 30, 4, 0, 126, 280, 210, 60, 5, 0, 462, 1260, 1260, 560, 105, 6, 0, 1716, 5544, 6930, 4200, 1260, 168, 7, 0, 6435, 24024, 36036, 27720, 11550, 2520, 252, 8
Offset: 0

Views

Author

Peter Luschny, Feb 11 2023

Keywords

Comments

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 0,     1;
[2] 0,     3,      2;
[3] 0,    10,     12,      3;
[4] 0,    35,     60,     30,      4;
[5] 0,   126,    280,    210,     60,     5;
[6] 0,   462,   1260,   1260,    560,   105,     6;
[7] 0,  1716,   5544,   6930,   4200,  1260,   168,    7;
[8] 0,  6435,  24024,  36036,  27720, 11550,  2520,  252,   8;
[9] 0, 24310, 102960, 180180, 168168, 90090, 27720, 4620, 360, 9;
		

Crossrefs

Cf. A135503, A088218 (and A001700), A182626 (row sums apart from sign).
Family: A172431 and unsigned A053123 (case 1), this sequence is case 2, A360546 (case 3).

Programs

  • Maple
    T := proc(n, k) if n = 0 then 1 else m := n - k + 1; (1/2) * binomial(2*m, m) * binomial(m + n - 1, k - 1) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..8);
    # With Vladimir Kruchinin's g.f.:
    gf := 1 + (y - x*y^2)/(2*sqrt((x*y - 1)^2 - 4*x)) ;
    serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
    seq(print(seq(coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 14 2023

Formula

The sequence is member of a family of sequences defined by T(0, 0, m) = 1 and for m > 0, n > 0 as T(n, k, m) = (1/m)*binomial(m*u, u)*binomial(u + n - 1, k - 1), where u = n - k + 1. Here the case m = 2 is considered.
G.f.: (y*(1 - x*y)) / (2*sqrt(x*(y*(x*y - 2) - 4) + 1)) - y/2 + 1. - Vladimir Kruchinin, Feb 14 2023
Previous Showing 11-17 of 17 results.