A053128
Binomial coefficients C(2*n-5,6).
Original entry on oeis.org
7, 84, 462, 1716, 5005, 12376, 27132, 54264, 100947, 177100, 296010, 475020, 736281, 1107568, 1623160, 2324784, 3262623, 4496388, 6096454, 8145060, 10737573, 13983816, 18009460, 22957480, 28989675, 36288252, 45057474, 55525372, 67945521, 82598880, 99795696
Offset: 6
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
- Vincenzo Librandi, Table of n, a(n) for n = 6..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjić, Two Enumerative Functions, University of Banja Luka (Bosnia and Herzegovina, 2017).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
- Index entries for sequences related to Chebyshev polynomials.
-
[Binomial(2*n-5,6): n in [6..40]]; // Vincenzo Librandi, Oct 07 2011
-
Table[Binomial[2*n-5,6], {n,6,50}] (* G. C. Greubel, Aug 26 2018 *)
-
for(n=6,50, print1(binomial(2*n-5,6), ", ")) \\ G. C. Greubel, Aug 26 2018
A053129
Binomial coefficients C(2*n-6,7).
Original entry on oeis.org
8, 120, 792, 3432, 11440, 31824, 77520, 170544, 346104, 657800, 1184040, 2035800, 3365856, 5379616, 8347680, 12620256, 18643560, 26978328, 38320568, 53524680, 73629072, 99884400, 133784560, 177100560, 231917400, 300674088, 386206920, 491796152, 621216192
Offset: 7
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
- Vincenzo Librandi, Table of n, a(n) for n = 7..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjić, Two Enumerative Functions, University of Banja Luka (Bosnia and Herzegovina, 2017).
- Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
[Binomial(2*n-6,7): n in [7..40]]; // Vincenzo Librandi, Oct 07 2011
-
A053129:=n->binomial(2*n-6,7); seq(A053129(n), n=7..50); # Wesley Ivan Hurt, Nov 14 2013
-
Table[Binomial[2 n - 6, 7], {n, 7, 50}] (* Wesley Ivan Hurt, Nov 14 2013 *)
-
for(n=7, 50, print1(binomial(2*n-6,7), ", ")) \\ G. C. Greubel, Aug 26 2018
A053130
Binomial coefficients C(2*n-7,8).
Original entry on oeis.org
9, 165, 1287, 6435, 24310, 75582, 203490, 490314, 1081575, 2220075, 4292145, 7888725, 13884156, 23535820, 38608020, 61523748, 95548245, 145008513, 215553195, 314457495, 450978066, 636763050, 886322710, 1217566350, 1652411475, 2217471399, 2944827765, 3872894697
Offset: 8
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
- Vincenzo Librandi, Table of n, a(n) for n = 8..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjić, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
- Index entries for sequences related to Chebyshev polynomials.
-
[Binomial(2*n-7, 8): n in [8..50]]; // Vincenzo Librandi, Apr 07 2011
-
Table[Binomial[2*n-7,8], {n,8,50}] (* G. C. Greubel, Aug 26 2018 *)
-
for(n=8,50, print1(binomial(2*n-7,8), ", ")) \\ G. C. Greubel, Aug 26 2018
A053131
Binomial coefficients C(2*n-8,9).
Original entry on oeis.org
10, 220, 2002, 11440, 48620, 167960, 497420, 1307504, 3124550, 6906900, 14307150, 28048800, 52451256, 94143280, 163011640, 273438880, 445891810, 708930508, 1101716330, 1677106640, 2505433700, 3679075400, 5317936260, 7575968400, 10648873950, 14783142660
Offset: 9
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).
- Vincenzo Librandi, Table of n, a(n) for n = 9..200
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Milan Janjić, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45, 10,-1).
- Index entries for sequences related to Chebyshev polynomials.
-
[Binomial(2*n-8,9): n in [9..40]]; // Vincenzo Librandi, Oct 07 2011
-
Binomial[2*Range[9,40]-8,9] (* Harvey P. Dale, Mar 19 2012 *)
-
for(n=9,50, print1(binomial(2*n-8,9), ", ")) \\ G. C. Greubel, Aug 26 2018
A054322
Fourth unsigned column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
4, 80, 896, 7680, 56320, 372736, 2293760, 13369344, 74711040, 403701760, 2122317824, 10905190400, 54962159616, 272461987840, 1331439861760, 6425271074816, 30666066493440, 144929376436224, 678948430151680
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
List([0..20], n-> 4^n*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+4, 3): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n*Binomial[2*n+4, 3], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
LinearRecurrence[{16,-96,256,-256},{4,80,896,7680},20] (* Harvey P. Dale, Mar 27 2023 *)
-
vector(20, n, n--; 4^n*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+4, 3) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A126570
Triangle read by rows: row n gives coefficients (ignoring the alternating signs) of the characteristic polynomial of the n X n matrix with 2's in the main diagonal, 1's in the super- and subdiagonals, and 1 in the upper-right corner, with other elements zeros.
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 6, 10, 5, 1, 8, 21, 20, 4, 1, 10, 36, 56, 35, 7, 1, 12, 55, 120, 126, 56, 6, 1, 14, 78, 220, 330, 252, 84, 9, 1, 16, 105, 364, 715, 792, 462, 120, 8, 1, 18, 136, 560, 1365, 2002, 1716, 792, 165, 11, 1, 20, 171, 816, 2380, 4368, 5005, 3432, 1287, 220, 10
Offset: 0
First few rows of the triangle are:
1;
1, 2;
1, 4, 3;
1, 6, 10, 5;
1, 8, 21, 20, 4;
1, 10, 36, 56, 35, 7;
1, 12, 55, 120, 126, 56, 6;
...
Charpoly of the 4 X 4 matrix [2,1,0,1; 1,2,1,0; 0,1,2,1; 0,0,1,2] = x^4 - 8*x^3 + 21*x^2 - 20*x + 4; with a root sqrt(3)+2.
- William G. Harter, Physics Department, University of Arkansas; personal communication.
-
M[i_,j_,n_]:=If[i==j,2,If[Abs[i-j]==1,1,If[j==n&&i==1,1,0]]]; row[0]=1; row[n_]:=Reverse[Abs[CoefficientList[CharacteristicPolynomial[Table[M[i,j,n],{i,n},{j,n}],x],x]]]; Array[row,11,0]//Flatten (* Stefano Spezia, Jun 30 2025 *)
A360282
Triangle read by rows. T(n, k) = (1/2) * binomial(2*(n - k + 1), n - k + 1) * binomial(2*n - k, k - 1) for n > 0, T(0, 0) = 1.
Original entry on oeis.org
1, 0, 1, 0, 3, 2, 0, 10, 12, 3, 0, 35, 60, 30, 4, 0, 126, 280, 210, 60, 5, 0, 462, 1260, 1260, 560, 105, 6, 0, 1716, 5544, 6930, 4200, 1260, 168, 7, 0, 6435, 24024, 36036, 27720, 11550, 2520, 252, 8
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 3, 2;
[3] 0, 10, 12, 3;
[4] 0, 35, 60, 30, 4;
[5] 0, 126, 280, 210, 60, 5;
[6] 0, 462, 1260, 1260, 560, 105, 6;
[7] 0, 1716, 5544, 6930, 4200, 1260, 168, 7;
[8] 0, 6435, 24024, 36036, 27720, 11550, 2520, 252, 8;
[9] 0, 24310, 102960, 180180, 168168, 90090, 27720, 4620, 360, 9;
-
T := proc(n, k) if n = 0 then 1 else m := n - k + 1; (1/2) * binomial(2*m, m) * binomial(m + n - 1, k - 1) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..8);
# With Vladimir Kruchinin's g.f.:
gf := 1 + (y - x*y^2)/(2*sqrt((x*y - 1)^2 - 4*x)) ;
serx := series(gf, x, 10): poly := n -> simplify(coeff(serx, x, n)):
seq(print(seq(coeff(poly(n), y, k), k = 0..n)), n = 0..9); # Peter Luschny, Feb 14 2023
Comments