cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A384914 The number of unordered factorizations of n into numbers of the form p^(k^2) where p is prime and k >= 0 (A323520).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 12 2025

Keywords

Comments

First differs from A203640, A295658 and A365333 at n = 64, from A043289 and A053164 at n = 81, and from A063775 at n = 512.

Examples

			a(16) = 2 since 4 has 2 factorizations: 2^1 * 2^1 * 2^1 * 2^1 and 2^4, with exponents 1 and 4 that are squares.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = If[n == 0, 1, Sum[Sum[d * Boole[IntegerQ[Sqrt[d]]], {d, Divisors[j]}] * s[n-j], {j, 1, n}] / n];
    f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = if(n < 1, 1, sum(j = 1, n, sumdiv(j, d, d*issquare(d)) * s(n-j))/n);
    a(n) = vecprod(apply(s, factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = A001156(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.08451356983124311685..., where f(x) = (1-x) / Product_{k>=1} (1-x^(k^2)).

A056553 Smallest 4th-power divisible by n divided by largest 4th-power which divides n.

Original entry on oeis.org

1, 16, 81, 16, 625, 1296, 2401, 16, 81, 10000, 14641, 1296, 28561, 38416, 50625, 1, 83521, 1296, 130321, 10000, 194481, 234256, 279841, 1296, 625, 456976, 81, 38416, 707281, 810000, 923521, 16, 1185921, 1336336, 1500625, 1296, 1874161, 2085136
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 16 because smallest 4th power divisible by 64 is 256 and largest 4th power which divides 64 is 16 and 256/16 = 16.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[Divisible[e, 4], 0, 1]; a[n_] := (Times @@ (f @@@ FactorInteger[ n]))^4; Array[a, 100] (* Amiram Eldar, Aug 29 2019*)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%4, f[i,1], 1))^4; } \\ Amiram Eldar, Oct 27 2022

Formula

a(n) = A053167(n)/A008835(n) = A056556(n)*A053165(n) = A056554(n)^4.
From Amiram Eldar, Oct 27 2022: (Start)
Multiplicative with a(p^e) = 1 if e is divisible by 4, and a(p^e) = p^4 otherwise.
Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(20)/(5*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.123026157003... . (End)

A056554 Powerfree kernel of 4th-powerfree part of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 1, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 3, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 2, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 2 because 4th-power-free part of 64 is 4 and power-free kernel of 4 is 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] :=  p^If[Divisible[e, 4], 0, 1]; a[n_] := Times @@ (f @@@ FactorInteger[ n]); Array[a, 100] (* Amiram Eldar, Aug 29 2019 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, if (frac(f[k,2]/4), f[k,2] = 1, f[k,2] = 0)); factorback(f); \\ Michel Marcus, Feb 28 2019

Formula

a(n) = A007947(A053165(n)) = A053166(A053165(n)) = n/(A053164(n)*A000190(n)) = A053166(n)/A053164(n) = A056553(n)^(1/4).
If n = Product_{j} Pj^Ej then a(n) = Product_{j} Pj^Fj, where Fj = 0 if Ej is 0 or a multiple of 4 and Fj = 1 otherwise.
Multiplicative with a(p^e) = p^(if 4|e, then 0, else 1). - Mitch Harris, Apr 19 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(8)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.3513111135... . - Amiram Eldar, Oct 27 2022

A056555 Smallest number k (k>0) such that n*k is a perfect 4th power.

Original entry on oeis.org

1, 8, 27, 4, 125, 216, 343, 2, 9, 1000, 1331, 108, 2197, 2744, 3375, 1, 4913, 72, 6859, 500, 9261, 10648, 12167, 54, 25, 17576, 3, 1372, 24389, 27000, 29791, 8, 35937, 39304, 42875, 36, 50653, 54872, 59319, 250, 68921, 74088, 79507, 5324, 1125
Offset: 1

Views

Author

Henry Bottomley, Jun 25 2000

Keywords

Examples

			a(64) = 4 because the smallest 4th power divisible by 64 is 256 and 64*4 = 256.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^Mod[4 - e, 4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
  • PARI
    a(n,f=factor(n))=f[,2]=-f[,2]%4; factorback(f) \\ Charles R Greathouse IV, Apr 24 2020

Formula

a(n) = A053167(n)/n = n^3/A000190(n)^4 = A056553(n)/A053165(n).
Multiplicative with a(p^e) = p^((4 - e) mod 4). - Amiram Eldar, Sep 08 2020
Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(16)/(4*zeta(4))) * Product_{p prime} (1 - 1/p^2 + 1/p^4 - 1/p^7 + 1/p^8) = 0.1537848996... . - Amiram Eldar, Oct 27 2022

A203640 Length of the cycle reached for the map x->A203639(x), starting at n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Jan 04 2012

Keywords

Comments

Differs from A063775 at n = 64, 81, 128, 144, 162, 192, ... Differs from A053164 at n = 64, 81, 128, 144, 162, 192, 216, 243,... Differs from A043289 at n = 64, 128, 144, 192, 216, 225,... - R. J. Mathar, Jan 11 2012

Examples

			Starting from n = 12, the derived sequence is A203639(12) = 4, A203639(4) = 4, A203639(4) = 4, etc, and the sequence 12, 4, 4, 4, 4, ... has cycle length 1. Therefore a(12) = 1.
From _Antti Karttunen_, Sep 13 2017: (Start)
Starting from n = 16, the derived sequence is A203639(16) = 32, A203639(32) = 80, A203639(80) = 32, etc, and the sequence 16, 32, 80, 32, 80, ... has cycle length 2. Therefore a(16) = 2.
Starting from n = 2916, the derived sequence is A203639(2916) = 5832, A203639(5832) = 17496, A203639(17496) = 61236, A203639(61236) = 20412, A203639(20412) = 5832,  etc, and the sequence 2916, 5832, 17496, 61236, 20412, 5832, 17496, 61236, 20412, ... has cycle length 4. Therefore a(2916) = 4. This is also the first point where the sequence attains a value larger than 2. (End)
		

Programs

  • Maple
    idx := proc(L,n) for i from 1 to nops(L) do if op(i,L)=n then return i ; end if; end do: return -1; end proc:
    A203640 := proc(n) local s,dr,d; s := [n] ;dr :=n ; for d from 1 do dr := A203639(dr) ; ii := idx(s,dr) ; if ii >0 then return nops(s)-ii+1 ; else s := [op(s),dr] ; end if ; end do: end proc:
  • Scheme
    (define (A203640 n) (let loop ((visited (list n)) (i 1)) (let ((next (A203639 (car visited)))) (cond ((member next visited) => (lambda (prepath) (+ 1 (- i (length prepath))))) (else (loop (cons next visited) (+ 1 i)))))))
    ;; (Code for A203639 given under that entry.) - Antti Karttunen, Sep 13 2017

A248765 Greatest k such that k^4 divides n!

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 6, 12, 12, 12, 12, 12, 12, 24, 24, 144, 144, 720, 720, 720, 720, 1440, 1440, 1440, 4320, 60480, 60480, 60480, 60480, 120960, 120960, 241920, 1209600, 3628800, 3628800, 3628800, 3628800, 7257600
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(6) = 2 because 2^4 divides 6! and if k > 2 then k^4 does not divide 6!.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 4; Table[p[m, n], {n, 1, z}]  (* A248764 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248765 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248766 *)
    f[p_, e_] := p^Floor[e/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2]\4));} \\ Amiram Eldar, Sep 01 2024

Formula

From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053164(n!).
a(n) = (n! / A248766(n))^(1/4) = A248764(n)^(1/4).
log(a(n)) = (1/4)*n*log(n) - (2*log(2)+1)*n/4 + o(n) (Jakimczuk, 2017). (End)

A295658 Multiplicative with a(p^e) = p^max(0,(floor(e/2)-1)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 28 2017

Keywords

Comments

a(n) differs from A053164(n) = A000188(A000188(n)) for the first time at n=64, where a(64) = 4, while A053164(64) = 2.

Examples

			For n = 64 = 2^6, a(64) = 2^(floor(6/2)-1) = 2^2 = 4.
		

Crossrefs

Cf. A046100 (positions of ones), A157289.

Programs

  • Mathematica
    f[p_, e_] := p^Max[0, Floor[e/2-1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^max(0, floor(f[i,2]/2-1)));} \\ Amiram Eldar, Nov 30 2022

Formula

a(1) = 1; for n > 1, a(n) = A020639(n)^max(0,A004526(A067029(n))-1) * a(A028234(n)).
a(n) = A003557(A000188(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3)/zeta(6) = 1.181564... (A157289). - Amiram Eldar, Nov 30 2022

A062379 n divided by largest 4th-power-free factor of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Jun 18 2001

Keywords

Crossrefs

Programs

Formula

a(n) = n/A058035(n).
Multiplicative with a(p^e) = p^max(e-3, 0). - Amiram Eldar, Sep 07 2020

A333844 G.f.: Sum_{k>=1} k * x^(k^4) / (1 - x^(k^4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 07 2020

Keywords

Comments

Sum of 4th roots of 4th powers dividing n.

Crossrefs

Programs

  • Mathematica
    nmax = 112; CoefficientList[Series[Sum[k x^(k^4)/(1 - x^(k^4)), {k, 1, Floor[nmax^(1/4)] + 1}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, #^(1/4) &, IntegerQ[#^(1/4)] &], {n, 112}]
    f[p_, e_] := (p^(Floor[e/4] + 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)

Formula

Dirichlet g.f.: zeta(s) * zeta(4*s-1).
If n = Product (p_j^k_j) then a(n) = Product ((p_j^(floor(k_j/4) + 1) - 1)/(p_j - 1)).
Sum_{k=1..n} a(k) ~ zeta(3)*n + zeta(1/2)*sqrt(n)/2. - Vaclav Kotesovec, Dec 01 2020

A334215 T(n, k) is the greatest positive integer m such that m^k divides n; square array T(n, k), n, k > 0 read by antidiagonals downwards.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 9, 1, 1, 1, 1, 1, 1, 1, 2, 3, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Rémy Sigrist, Apr 19 2020

Keywords

Examples

			Square array starts:
  n\k|   1  2  3  4  5  6  7  8  9 10
  ---+-------------------------------
    1|   1  1  1  1  1  1  1  1  1  1
    2|   2  1  1  1  1  1  1  1  1  1
    3|   3  1  1  1  1  1  1  1  1  1
    4|   4  2  1  1  1  1  1  1  1  1
    5|   5  1  1  1  1  1  1  1  1  1
    6|   6  1  1  1  1  1  1  1  1  1
    7|   7  1  1  1  1  1  1  1  1  1
    8|   8  2  2  1  1  1  1  1  1  1
    9|   9  3  1  1  1  1  1  1  1  1
   10|  10  1  1  1  1  1  1  1  1  1
   11|  11  1  1  1  1  1  1  1  1  1
   12|  12  2  1  1  1  1  1  1  1  1
   13|  13  1  1  1  1  1  1  1  1  1
   14|  14  1  1  1  1  1  1  1  1  1
   15|  15  1  1  1  1  1  1  1  1  1
   16|  16  4  2  2  1  1  1  1  1  1
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (f=factor(n)); prod (i=1, #f~, f[i,1]^(f[i,2]\k)) }

Formula

T(n, 1) = n.
T(n, 2) = A000188(n).
T(n, 3) = A053150(n).
T(n, 4) = A053164(n).
T(n, A051903(n)) = A261969(n).
T(n, k) = 1 for any k > A051903(n).
T(n^k, k) = n.
Previous Showing 11-20 of 23 results. Next