A236538
Triangle read by rows: T(n,k) = (n+1)*2^(n-2)+(k-1)*2^(n-1) for 1 <= k <= n.
Original entry on oeis.org
1, 3, 5, 8, 12, 16, 20, 28, 36, 44, 48, 64, 80, 96, 112, 112, 144, 176, 208, 240, 272, 256, 320, 384, 448, 512, 576, 640, 576, 704, 832, 960, 1088, 1216, 1344, 1472, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 2816, 3328, 3840, 4352, 4864, 5376
Offset: 1
Triangle begins:
================================================
\k | 1 2 3 4 5 6 7
n\ |
================================================
1 | 1;
2 | 3, 5;
3 | 8, 12, 16;
4 | 20, 28, 36, 44;
5 | 48, 64, 80, 96, 112;
6 | 112, 144, 176, 208, 240, 272;
7 | 256, 320, 384, 448, 512, 576, 640;
...
A058962, central elements in odd rows;
-
int a(int n, int k) {return (n+1)*pow(2,n-2)+(k-1)*pow(2,n-1);}
-
/* As triangle: */ [[(n+1)*2^(n-2)+(k-1)*2^(n-1): k in [1..n]]: n in [1..10]]; // Bruno Berselli, Jan 28 2014
-
t[n_, k_] := (n + 1)*2^(n - 2) + (k - 1)*2^(n - 1); Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Bruno Berselli, Jan 28 2014 *)
A347823
Triangle read by rows: T(n,k) = (n+k+1)*binomial(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 2, 3, 3, 8, 5, 4, 15, 18, 7, 5, 24, 42, 32, 9, 6, 35, 80, 90, 50, 11, 7, 48, 135, 200, 165, 72, 13, 8, 63, 210, 385, 420, 273, 98, 15, 9, 80, 308, 672, 910, 784, 420, 128, 17, 10, 99, 432, 1092, 1764, 1890, 1344, 612, 162, 19, 11, 120, 585, 1680, 3150, 4032, 3570, 2160, 855, 200, 21
Offset: 0
Triangle begins:
1;
2, 3;
3, 8, 5;
4, 15, 18, 7;
5, 24, 42, 32, 9;
6, 35, 80, 90, 50, 11;
7, 48, 135, 200, 165, 72, 13;
8, 63, 210, 385, 420, 273, 98, 15;
...
A367631
Triangle read by rows: T(n,k) is the number of permutations of length n avoiding simultaneously the patterns 123 and 132 with the maximum number of non-overlapping descents equal k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 0, 4, 0, 0, 0, 5, 3, 0, 0, 0, 2, 14, 0, 0, 0, 0, 0, 23, 9, 0, 0, 0, 0, 0, 16, 48, 0, 0, 0, 0, 0, 0, 4, 97, 27, 0, 0, 0, 0, 0, 0, 0, 94, 162, 0, 0, 0, 0, 0, 0, 0, 0, 44, 387, 81, 0, 0, 0, 0, 0, 0, 0, 0, 8, 476, 540, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 320, 1485, 243, 0, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n,k) begins:
1;
1, 0;
1, 1, 0;
0, 4, 0, 0;
0, 5, 3, 0, 0;
0, 2, 14, 0, 0, 0;
0, 0, 23, 9, 0, 0, 0;
0, 0, 16, 48, 0, 0, 0, 0;
0, 0, 4, 97, 27, 0, 0, 0, 0;
0, 0, 0, 94, 162, 0, 0, 0, 0, 0;
0, 0, 0, 44, 387, 81, 0, 0, 0, 0, 0;
0, 0, 0, 8, 476, 540, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0, 320, 1485, 243, 0, 0, 0, 0, 0, 0;
...
A340228
a(n) is the sum of the lengths of all the segments used to draw a rectangle of height 2^(n-1) and width n divided into 2^(n-1) rectangles of unit height, in turn, divided into rectangles of unit height and lengths corresponding to the parts of the compositions of n.
Original entry on oeis.org
4, 11, 27, 64, 149, 342, 775, 1736, 3849, 8458, 18443, 39948, 86029, 184334, 393231, 835600, 1769489, 3735570, 7864339, 16515092, 34603029, 72351766, 150994967, 314572824, 654311449, 1358954522, 2818572315, 5838471196, 12079595549, 24964497438, 51539607583, 106300440608
Offset: 1
Illustrations for n = 1..4:
_ _ _
|_| |_ _|
|_|_|
a(1) = 4 a(2) = 11
_ _ _ _ _ _ _
|_ _ _| |_ _ _ _|
|_ _|_| |_ _ _|_|
|_|_ _| |_|_ _ _|
|_|_|_| |_ _|_ _|
|_ _|_|_|
|_|_ _|_|
|_|_|_ _|
|_|_|_|_|
a(3) = 27 a(4) = 64
-
LinearRecurrence[{6,-13,12,-4},{4,11,27,64},32]
A386250
Total number of ones in runs of 1's of length >= 4 over all binary strings of length n.
Original entry on oeis.org
0, 0, 0, 0, 4, 13, 36, 92, 224, 528, 1216, 2752, 6144, 13568, 29696, 64512, 139264, 299008, 638976, 1359872, 2883584, 6094848, 12845056, 27000832, 56623104, 118489088, 247463936, 515899392, 1073741824, 2231369728, 4630511616, 9596567552, 19864223744, 41070624768, 84825604096, 175019917312
Offset: 0
For n=6 there are eight binary strings that contain runs of 1s of length >= 4: 001111, 011110, 011111, 101111, 111100, 111101, 111110 and 111111; the runs of length >= 4 in these strings contain a(6) = 36 ones.
-
LinearRecurrence [{4,-4}, {4,13}, 30] (* Hugo Pfoertner, Aug 14 2025 *)
Comments