cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A354333 a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k+1)!.

Original entry on oeis.org

1, 6, 120, 5040, 362880, 39916800, 249080832, 1307674368000, 27360571392000, 121645100408832000, 51090942171709440000, 5170403347776995328000, 15511210043330985984000000, 10888869450418352160768000000, 8841761993739701954543616000000, 432780981798838043038187520000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Denominator
    nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Denominator
  • PARI
    a(n) = denominator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354333(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022

Formula

Denominators of coefficients in expansion of sin(sqrt(x)) / (sqrt(x) * (1 - x)).

A354335 a(n) is the denominator of Sum_{k=0..n} 1 / (2*k)!.

Original entry on oeis.org

1, 2, 24, 720, 4480, 518400, 479001600, 29059430400, 20922789888000, 6402373705728000, 810967336058880000, 1124000727777607680000, 88635485961891348480000, 14936720782466875392000000, 27717122237428532772864000000, 265252859812191058636308480000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 24 2022

Keywords

Examples

			1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
    nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
  • PARI
    a(n) = denominator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
    
  • Python
    from fractions import Fraction
    from math import factorial
    def A354335(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022

Formula

Denominators of coefficients in expansion of cosh(sqrt(x)) / (1 - x).

A053519 Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).

Original entry on oeis.org

1, 3, 15, 29, 597, 4701, 4643, 413691, 4512993, 17926611, 695000919, 9680369943, 4380611853, 2303928046437, 39031251610227, 25940523189513, 1206420504316107, 20365306128628437, 1849040492948486661
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

Also numerators of successive convergents to continued fraction 1/(2+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/9+...))))))).
A053518/A053519 -> (2*e-5)/(3-e) = 1.5496467783... as n-> infinity.

Examples

			Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...
		

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
  • E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.

Crossrefs

Programs

  • Maple
    for j from 1 to 50 do printf(`%d,`,denom(cfrac([1,seq([i,i+1],i=2..j)]))); od:
  • Mathematica
    num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 16 2013 *)

Extensions

Thanks to R. K. Guy, Steven Finch, Bill Gosper for comments
More terms from James Sellers, Feb 02 2000

A103360 Denominator of coefficient in the interpolation polynomial for initial values of the factorial, read by row.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 2, 6, 1, 8, 12, 8, 12, 1, 30, 24, 12, 24, 60, 1, 144, 240, 144, 48, 36, 20, 1, 280, 720, 240, 144, 240, 180, 140, 1, 5760, 10080, 960, 180, 640, 1440, 1440, 280, 1
Offset: 0

Views

Author

Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Feb 02 2005

Keywords

Comments

N(n,n)/D(n,n) = Sum{k=0..n}(-1)^k/k! = A000166/n! = A053557/A053556, where N(n,n) is A103361.

Examples

			1; 1; 1/2*x^2-1/2*x+1; 1/3*x^3-1/2*x^2+1/6*x+1;
3/8*x^4-23/12*x^3+29/8*x^2-25/12*x+1;
11/30*x^5-79/24*x^4+131/12*x^3-353/24*x^2+403/60*x+1
		

Crossrefs

Formula

D(n, k) in Sum{k=0..n}N(n, k)/D(n, k)*m^k=m!, m=0..n, with reduced fraction N(n, k)/D(n, k) and N(n, k) is A103361. D(n, k)=a(n*(n+3)/2-k).

A103361 Numerator of coefficient in the interpolation polynomial for initial values of the factorial, read by rows.

Original entry on oeis.org

1, 0, 1, 1, -1, 1, 1, -1, 1, 1, 3, -23, 29, -25, 1, 11, -79, 131, -353, 403, 1, 53, -1237, 4031, -3451, 3101, -749, 1, 103, -5297, 14213, -34903, 126121, -101297, 31837, 1, 2199, -100123, 106657, -119129, 1438599, -6199951, 6112397, -455481, 1
Offset: 0

Views

Author

Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Feb 02 2005

Keywords

Comments

Denominator N(n,n) of leading coefficient of the n-th polynomial = n-th term of A053557. N(n,n)/D(n,n) = Sum{k=0..n}(-1)^k/k! = A000166/n! = A053557/A053556, where D(n,n) is A103360.

Examples

			1; 1; 1/2*x^2-1/2*x+1; 1/3*x^3-1/2*x^2+1/6*x+1;
3/8*x^4-23/12*x^3+29/8*x^2-25/12*x+1;
11/30*x^5-79/24*x^4+131/12*x^3-353/24*x^2+403/60*x+1
		

Crossrefs

Formula

N(n, k) in Sum{k=0..n}N(n, k)/D(n, k)*m^k=m!, m=0..n, with reduced fraction N(n, k)/D(n, k) and D(n, k) is A103360. N(n, k)=a(n*(n+3)/2-k).

A354299 a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.

Original entry on oeis.org

1, 3, 15, 105, 189, 10395, 135135, 2027025, 34459425, 130945815, 13749310575, 316234143225, 7905853580625, 12556355686875, 1238056670725875, 776918153694375, 6332659870762850625, 7642865361265509375, 8200794532637891559375, 63966197354575554163125, 13113070457687988603440625
Offset: 1

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
		

Crossrefs

Programs

  • Maple
    S:= 0: R:= NULL:
    for n from 1 to 100 do
      S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
      R:= R, denom(S);
    od:
    R; # Robert Israel, Jan 10 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Denominator
    nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Denominator // Rest
    Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Denominator

Formula

Denominators of coefficients in expansion of sqrt(Pi*x*exp(-x)/2) * erfi(sqrt(x/2)) / (1 - x).

A354401 a(n) is the denominator of Sum_{k=1..n} 1 / (k*k!).

Original entry on oeis.org

1, 4, 36, 288, 7200, 10800, 66150, 33868800, 914457600, 4572288000, 553246848000, 737662464000, 41554985472000, 54540918432000, 19634730635520000, 5026491042693120000, 1452655911338311680000, 39221709606134415360000, 14159037167814523944960000, 141590371678145239449600000
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2022

Keywords

Examples

			1, 5/4, 47/36, 379/288, 9487/7200, 14233/10800, 87179/66150, ...
		

Crossrefs

Cf. A001563, A053556, A061355, A229837, A353545 (numerators), A354404.

Programs

  • Mathematica
    Table[Sum[1/(k k!), {k, 1, n}], {n, 1, 20}] // Denominator
    nmax = 20; Assuming[x > 0, CoefficientList[Series[(ExpIntegralEi[x] - Log[x] - EulerGamma)/(1 - x), {x, 0, nmax}], x]] // Denominator // Rest
  • PARI
    a(n) = denominator(sum(k=1, n, 1/(k*k!))); \\ Michel Marcus, May 26 2022
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A354401(n): return sum(Fraction(1, k*factorial(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, May 27 2022

Formula

Denominators of coefficients in expansion of (Ei(x) - log(x) - gamma) / (1 - x), x > 0.

A354404 a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).

Original entry on oeis.org

1, 4, 36, 288, 7200, 10800, 264600, 33868800, 914457600, 4572288000, 553246848000, 2212987392000, 373994869248000, 327245510592000, 19634730635520000, 5026491042693120000, 1452655911338311680000, 39221709606134415360000, 14159037167814523944960000, 141590371678145239449600000
Offset: 1

Views

Author

Ilya Gutkovskiy, May 25 2022

Keywords

Examples

			1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...
		

Crossrefs

Cf. A001563, A053556, A061355, A239069, A354401, A354402 (numerators).

Programs

  • Mathematica
    Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Denominator
    nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Denominator // Rest
  • PARI
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ Michel Marcus, May 26 2022
    
  • Python
    from math import factorial
    from fractions import Fraction
    def A354404(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, May 27 2022

Formula

Denominators of coefficients in expansion of (gamma + log(x) - Ei(-x)) / (1 - x), x > 0.

A373417 Triangle T(n,k) for the number of permutations in symmetric group S_n with (n-k) fixed points and an even number of non-fixed point cycles. Equivalent to the number of cycles of n items with cycle type defined by non-unity partitions of k<=n that contain an even number of parts.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 15, 20, 1, 0, 0, 0, 45, 120, 130, 1, 0, 0, 0, 105, 420, 910, 924, 1, 0, 0, 0, 210, 1120, 3640, 7392, 7413, 1, 0, 0, 0, 378, 2520, 10920, 33264, 66717, 66744, 1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476
Offset: 0

Views

Author

Keywords

Comments

A343418(n) + a(n) = A098825(n) = partial derangement "rencontres" triangle.
A343418(n) - a(n) = (k-1) * binomial(n,k) = A127717(n-1,k-1).
Difference of 1st and 2nd leading diagonals (n > 0).
T(n,n) - T(n,n-1) = -1,0,0,3,5,10,14,21,27,36,44,...
= (-1) + (1+0) + (3+2) + (5+4) + (7+6) + (9+8) + ...
Cf. A176222(n) with 2 terms -1,0 prepended (moving its offset from 3 to 1).

Examples

			Triangle array T(n,k):
  n:  {k<=n}
  0:  {1}
  1:  {1, 0}
  2:  {1, 0, 0}
  3:  {1, 0, 0, 0}
  4:  {1, 0, 0, 0,   3}
  5:  {1, 0, 0, 0,  15,   20}
  6:  {1, 0, 0, 0,  45,  120,   130}
  7:  {1, 0, 0, 0, 105,  420,   910,    924}
  8:  {1, 0, 0, 0, 210, 1120,  3640,   7392,   7413}
  9:  {1, 0, 0, 0, 378, 2520, 10920,  33264,  66717,  66744}
  10: {1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476}
T(n,0) = 1 due to sole permutation in S_n with n fixed points, namely the identity permutation, with 0 non-fixed point cycles, an even number. (T(0,0)=1 relies on S_0 containing an empty permutation.)
T(n,1) = 0 due to no permutations in S_n with (n-1) fixed points.
T(n,2) = T(n,3) = 0 due to only non-unity partitions of 2 and 3 being of odd length, namely the trivial partitions (2),(3).
Example:
T(4,4) = 3 since S_4 contains 3 permutations with 0 fixed points and an even number of non-fixed point cycles, namely the derangements: (12)(34),(13)(24),(14)(23).
Worked Example:
T(7,6) = 910 permutations in S_7 with 1 fixed point and an even number of non-fixed point cycles.
T(7,6) = 910 possible (4,2)- and (3,3)-cycles of 7 items.
N(n,y) = possible y-cycles of n items.
N(n,y) = (n!/(n-k)!) / (M(y) * s(y)).
y = partition of k<=n with q parts = (p_1, p_2, ..., p_i, ..., p_q)
s.t. k = Sum_{i=1..q} p_i.
Or:
y = partition of k<=n with d distinct parts, each with multiplicity m_j = (y_1^m_1, y_2^m_2, ..., y_j^m_j, ..., y_d^m_d)
s.t. k = Sum_{j=1..d} m_j*y_j.
M(y) = Product_{i=1..q} p_i = Product_{j=1..d} y_j^m_j.
s(y) = Product_{j=1..d} m_j! ("symmetry of repeated parts").
Note: (n!/(n-k)!) / s(y) = multinomial(n, {m_j}).
Therefore:
T(7,6) = N(7,y=(4,2)) + N(7,y=(3^2))
       = (7!/(4*2)) + (7!/(3^2)/2!)
       = 7! * (1/8 + 1/18)
       = 5040 * (13/72)
T(7,6) = 910.
		

Crossrefs

Cf. A373418 (odd case), A373339 (row sums), A216778 (main diagonal).

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, t, add(expand(`if`(j>1, x^j, 1)*
          b(n-j, irem(t+signum(j-1), 2)))*binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jun 04 2024
  • Mathematica
    Table[Table[n!/(n-k)!/2 * (Sum[(-1)^j/j!, {j, 0, k}] - ((k - 1)/k!)), {k, 0, n}], {n, 0, 10}]

Formula

T(n,k) = (n!/(n-k)!/2) * (Sum_{j=0..k} (-1)^j/j! - (k-1)/k!) Cf. Sum_{j=0..k} (-1)^j/j! = A053557(k) / A053556(k).

A354303 a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 1, 4, 18, 576, 2400, 518400, 12700800, 541900800, 65840947200, 13168189440000, 88519495680000, 229442532802560000, 19387894021816320000, 2533351485517332480000, 855006126362099712000000, 437763136697395052544000000, 1621968544942912438272000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Denominator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator

Formula

Denominators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).
Previous Showing 11-20 of 25 results. Next