A354333
a(n) is the denominator of Sum_{k=0..n} (-1)^k / (2*k+1)!.
Original entry on oeis.org
1, 6, 120, 5040, 362880, 39916800, 249080832, 1307674368000, 27360571392000, 121645100408832000, 51090942171709440000, 5170403347776995328000, 15511210043330985984000000, 10888869450418352160768000000, 8841761993739701954543616000000, 432780981798838043038187520000000
Offset: 0
1, 5/6, 101/120, 4241/5040, 305353/362880, 33588829/39916800, 209594293/249080832, ...
-
Table[Sum[(-1)^k/(2 k + 1)!, {k, 0, n}], {n, 0, 15}] // Denominator
nmax = 15; CoefficientList[Series[Sin[Sqrt[x]]/(Sqrt[x] (1 - x)), {x, 0, nmax}], x] // Denominator
-
a(n) = denominator(sum(k=0, n, (-1)^k/(2*k+1)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354333(n): return sum(Fraction(-1 if k % 2 else 1,factorial(2*k+1)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022
A354335
a(n) is the denominator of Sum_{k=0..n} 1 / (2*k)!.
Original entry on oeis.org
1, 2, 24, 720, 4480, 518400, 479001600, 29059430400, 20922789888000, 6402373705728000, 810967336058880000, 1124000727777607680000, 88635485961891348480000, 14936720782466875392000000, 27717122237428532772864000000, 265252859812191058636308480000000
Offset: 0
1, 3/2, 37/24, 1111/720, 6913/4480, 799933/518400, 739138093/479001600, ...
-
Table[Sum[1/(2 k)!, {k, 0, n}], {n, 0, 15}] // Denominator
nmax = 15; CoefficientList[Series[Cosh[Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
-
a(n) = denominator(sum(k=0, n, 1/(2*k)!)); \\ Michel Marcus, May 24 2022
-
from fractions import Fraction
from math import factorial
def A354335(n): return sum(Fraction(1,factorial(2*k)) for k in range(n+1)).denominator # Chai Wah Wu, May 24 2022
A053519
Denominators of successive convergents to continued fraction 1+2/(3+3/(4+4/(5+5/(6+6/(7+7/(8+8/(9+9/10+...))))))).
Original entry on oeis.org
1, 3, 15, 29, 597, 4701, 4643, 413691, 4512993, 17926611, 695000919, 9680369943, 4380611853, 2303928046437, 39031251610227, 25940523189513, 1206420504316107, 20365306128628437, 1849040492948486661
Offset: 0
Convergents (to the first continued fraction) are 1, 5/3, 23/15, 45/29, 925/597, 7285/4701, ...
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- M. A. Stern, Theorie der Kettenbrüche und ihre Anwendung, Crelle, 1832, pp. 1-22.
-
for j from 1 to 50 do printf(`%d,`,denom(cfrac([1,seq([i,i+1],i=2..j)]))); od:
-
num[0]=1; num[1]=5; num[n_] := num[n] = (n+2)*num[n-1] + (n+1)*num[n-2]; den[0]=1; den[1]=3; den[n_] := den[n] = (n+2)*den[n-1] + (n+1)*den[n-2]; a[n_] := Denominator[num[n]/den[n]]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 16 2013 *)
A103360
Denominator of coefficient in the interpolation polynomial for initial values of the factorial, read by row.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 2, 6, 1, 8, 12, 8, 12, 1, 30, 24, 12, 24, 60, 1, 144, 240, 144, 48, 36, 20, 1, 280, 720, 240, 144, 240, 180, 140, 1, 5760, 10080, 960, 180, 640, 1440, 1440, 280, 1
Offset: 0
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Feb 02 2005
1; 1; 1/2*x^2-1/2*x+1; 1/3*x^3-1/2*x^2+1/6*x+1;
3/8*x^4-23/12*x^3+29/8*x^2-25/12*x+1;
11/30*x^5-79/24*x^4+131/12*x^3-353/24*x^2+403/60*x+1
A103361
Numerator of coefficient in the interpolation polynomial for initial values of the factorial, read by rows.
Original entry on oeis.org
1, 0, 1, 1, -1, 1, 1, -1, 1, 1, 3, -23, 29, -25, 1, 11, -79, 131, -353, 403, 1, 53, -1237, 4031, -3451, 3101, -749, 1, 103, -5297, 14213, -34903, 126121, -101297, 31837, 1, 2199, -100123, 106657, -119129, 1438599, -6199951, 6112397, -455481, 1
Offset: 0
Nikolaus Meyberg (Nikolaus.Meyberg(AT)t-online.de), Feb 02 2005
1; 1; 1/2*x^2-1/2*x+1; 1/3*x^3-1/2*x^2+1/6*x+1;
3/8*x^4-23/12*x^3+29/8*x^2-25/12*x+1;
11/30*x^5-79/24*x^4+131/12*x^3-353/24*x^2+403/60*x+1
A354299
a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (2*k-1)!!.
Original entry on oeis.org
1, 3, 15, 105, 189, 10395, 135135, 2027025, 34459425, 130945815, 13749310575, 316234143225, 7905853580625, 12556355686875, 1238056670725875, 776918153694375, 6332659870762850625, 7642865361265509375, 8200794532637891559375, 63966197354575554163125, 13113070457687988603440625
Offset: 1
1, 2/3, 11/15, 76/105, 137/189, 7534/10395, 97943/135135, 1469144/2027025, 24975449/34459425, ...
-
S:= 0: R:= NULL:
for n from 1 to 100 do
S:= S + (-1)^(n+1)/doublefactorial(2*n-1);
R:= R, denom(S);
od:
R; # Robert Israel, Jan 10 2024
-
Table[Sum[(-1)^(k + 1)/(2 k - 1)!!, {k, 1, n}], {n, 1, 21}] // Denominator
nmax = 21; CoefficientList[Series[Sqrt[Pi x Exp[-x]/2] Erfi[Sqrt[x/2]]/(1 - x), {x, 0, nmax}], x] // Denominator // Rest
Table[1/(1 + ContinuedFractionK[2 k - 1, 2 k, {k, 1, n - 1}]), {n, 1, 21}] // Denominator
A354401
a(n) is the denominator of Sum_{k=1..n} 1 / (k*k!).
Original entry on oeis.org
1, 4, 36, 288, 7200, 10800, 66150, 33868800, 914457600, 4572288000, 553246848000, 737662464000, 41554985472000, 54540918432000, 19634730635520000, 5026491042693120000, 1452655911338311680000, 39221709606134415360000, 14159037167814523944960000, 141590371678145239449600000
Offset: 1
1, 5/4, 47/36, 379/288, 9487/7200, 14233/10800, 87179/66150, ...
-
Table[Sum[1/(k k!), {k, 1, n}], {n, 1, 20}] // Denominator
nmax = 20; Assuming[x > 0, CoefficientList[Series[(ExpIntegralEi[x] - Log[x] - EulerGamma)/(1 - x), {x, 0, nmax}], x]] // Denominator // Rest
-
a(n) = denominator(sum(k=1, n, 1/(k*k!))); \\ Michel Marcus, May 26 2022
-
from math import factorial
from fractions import Fraction
def A354401(n): return sum(Fraction(1, k*factorial(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, May 27 2022
A354404
a(n) is the denominator of Sum_{k=1..n} (-1)^(k+1) / (k*k!).
Original entry on oeis.org
1, 4, 36, 288, 7200, 10800, 264600, 33868800, 914457600, 4572288000, 553246848000, 2212987392000, 373994869248000, 327245510592000, 19634730635520000, 5026491042693120000, 1452655911338311680000, 39221709606134415360000, 14159037167814523944960000, 141590371678145239449600000
Offset: 1
1, 3/4, 29/36, 229/288, 5737/7200, 8603/10800, 210781/264600, ...
-
Table[Sum[(-1)^(k + 1)/(k k!), {k, 1, n}], {n, 1, 20}] // Denominator
nmax = 20; Assuming[x > 0, CoefficientList[Series[(EulerGamma + Log[x] - ExpIntegralEi[-x])/(1 - x), {x, 0, nmax}], x]] // Denominator // Rest
-
a(n) = denominator(sum(k=1, n, (-1)^(k+1)/(k*k!))); \\ Michel Marcus, May 26 2022
-
from math import factorial
from fractions import Fraction
def A354404(n): return sum(Fraction(1 if k & 1 else -1, k*factorial(k)) for k in range(1,n+1)).denominator # Chai Wah Wu, May 27 2022
A373417
Triangle T(n,k) for the number of permutations in symmetric group S_n with (n-k) fixed points and an even number of non-fixed point cycles. Equivalent to the number of cycles of n items with cycle type defined by non-unity partitions of k<=n that contain an even number of parts.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 15, 20, 1, 0, 0, 0, 45, 120, 130, 1, 0, 0, 0, 105, 420, 910, 924, 1, 0, 0, 0, 210, 1120, 3640, 7392, 7413, 1, 0, 0, 0, 378, 2520, 10920, 33264, 66717, 66744, 1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476
Offset: 0
Triangle array T(n,k):
n: {k<=n}
0: {1}
1: {1, 0}
2: {1, 0, 0}
3: {1, 0, 0, 0}
4: {1, 0, 0, 0, 3}
5: {1, 0, 0, 0, 15, 20}
6: {1, 0, 0, 0, 45, 120, 130}
7: {1, 0, 0, 0, 105, 420, 910, 924}
8: {1, 0, 0, 0, 210, 1120, 3640, 7392, 7413}
9: {1, 0, 0, 0, 378, 2520, 10920, 33264, 66717, 66744}
10: {1, 0, 0, 0, 630, 5040, 27300, 110880, 333585, 667440, 667476}
T(n,0) = 1 due to sole permutation in S_n with n fixed points, namely the identity permutation, with 0 non-fixed point cycles, an even number. (T(0,0)=1 relies on S_0 containing an empty permutation.)
T(n,1) = 0 due to no permutations in S_n with (n-1) fixed points.
T(n,2) = T(n,3) = 0 due to only non-unity partitions of 2 and 3 being of odd length, namely the trivial partitions (2),(3).
Example:
T(4,4) = 3 since S_4 contains 3 permutations with 0 fixed points and an even number of non-fixed point cycles, namely the derangements: (12)(34),(13)(24),(14)(23).
Worked Example:
T(7,6) = 910 permutations in S_7 with 1 fixed point and an even number of non-fixed point cycles.
T(7,6) = 910 possible (4,2)- and (3,3)-cycles of 7 items.
N(n,y) = possible y-cycles of n items.
N(n,y) = (n!/(n-k)!) / (M(y) * s(y)).
y = partition of k<=n with q parts = (p_1, p_2, ..., p_i, ..., p_q)
s.t. k = Sum_{i=1..q} p_i.
Or:
y = partition of k<=n with d distinct parts, each with multiplicity m_j = (y_1^m_1, y_2^m_2, ..., y_j^m_j, ..., y_d^m_d)
s.t. k = Sum_{j=1..d} m_j*y_j.
M(y) = Product_{i=1..q} p_i = Product_{j=1..d} y_j^m_j.
s(y) = Product_{j=1..d} m_j! ("symmetry of repeated parts").
Note: (n!/(n-k)!) / s(y) = multinomial(n, {m_j}).
Therefore:
T(7,6) = N(7,y=(4,2)) + N(7,y=(3^2))
= (7!/(4*2)) + (7!/(3^2)/2!)
= 7! * (1/8 + 1/18)
= 5040 * (13/72)
T(7,6) = 910.
-
b:= proc(n, t) option remember; `if`(n=0, t, add(expand(`if`(j>1, x^j, 1)*
b(n-j, irem(t+signum(j-1), 2)))*binomial(n-1, j-1)*(j-1)!, j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
seq(T(n), n=0..10); # Alois P. Heinz, Jun 04 2024
-
Table[Table[n!/(n-k)!/2 * (Sum[(-1)^j/j!, {j, 0, k}] - ((k - 1)/k!)), {k, 0, n}], {n, 0, 10}]
A354303
a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.
Original entry on oeis.org
1, 1, 4, 18, 576, 2400, 518400, 12700800, 541900800, 65840947200, 13168189440000, 88519495680000, 229442532802560000, 19387894021816320000, 2533351485517332480000, 855006126362099712000000, 437763136697395052544000000, 1621968544942912438272000000
Offset: 0
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
-
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Denominator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
Comments