cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 118 results. Next

A287730 The s-fusc function s(n) = a(n): a(1) = 0, a(2n) = A287729(n), a(2n+1) = A287729(n) + A287729(n+1).

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4
Offset: 1

Views

Author

I. V. Serov, May 30 2017

Keywords

Comments

Define a sequence chf(n) of Christoffel words over an alphabet {-,+}:
chf(1) = '-',
chf(2*n+0) = negate(chf(n)),
chf(2*n+1) = negate(concatenate(chf(n),chf(n+1))).
Then the length of the chf(n) word is fusc(n) = A002487(n), the number of '-'-signs in the chf(n) word is c-fusc(n) = A287729(n) and the number of '+'-signs in the chf(n) word is the current sequence a(n) = s-fusc(n). See examples below.

Examples

			n         chf(n) A070939(n) A002487(n) A287729(n)    a(n)
                                fusc       c-fusc     s-fusc
1          '-'       1          1          1          0
2          '+'       2          1          0          1
3          '+-'      2          2          1          1
4          '-'       3          1          1          0
5          '--+'     3          3          2          1
6          '-+'      3          2          1          1
7          '-++'     3          3          1          2
8          '+'       4          1          0          1
9          '+++-'    4          4          1          3
10         '++-'     4          3          1          2
11         '++-+-'   4          5          2          3
12         '+-'      4          2          1          1
13         '+-+--'   4          5          3          2
14         '+--'     4          3          2          1
15         '+---'    4          4          3          1
16         '-'       5          1          1          0
17         '----+'   5          5          4          1
		

Crossrefs

Cf. mutual recurrence pair A000360, A284556 and also A213369.

Programs

  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def c(n): return 1 if n==1 else s(n//2) if n%2==0 else s((n - 1)//2) + s((n + 1)//2)
    @cacheit
    def s(n): return 0 if n==1 else c(n//2) if n%2==0 else c((n - 1)//2) + c((n + 1)//2)
    print([s(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (definec (A287730 n) (cond ((= 1 n) 0) ((even? n) (A287729 (/ n 2))) (else (+ (A287729 (/ (- n 1) 2)) (A287729 (/ (+ n 1) 2))))))
    ;; An implementation of memoization-macro definec can be found for example in: http://oeis.org/wiki/Memoization
    ;; Second version after the alternative formula given by the author:
    (definec (A287730 n) (if (<= n 2) (- n 1) (- (* (A037227 (- n 1)) (A287730 (- n 1))) (A287730 (- n 2)) (* (if (= 1 (A002487 (- n 1))) 1 0) 2 (expt -1 (A070939 n)))))) ;; Antti Karttunen, Jun 01 2017
    

Formula

The mutual diatomic recurrence pair c(n) (A287729) and s(n) (this sequence) are defined by c(1)=1, s(1)=0, c(2n) = s(n), c(2n+1) = s(n)+s(n+1), s(2n) = c(n), s(2n+1) = c(n)+c(n+1).
a(n) + A287729(n) = A002487(n). [s-fusc(n) + c-fusc(n) = fusc(n).]
gcd(a(n), A287729(n)) = gcd(a(n), A002487(n)) = 1.
Let k(n) = A037227(n) = 1 + 2*A007814(n) = 1 + 2*floor(A002487(n-1)/A002487(n)) for n > 1.
Let d(n) = 2*A255738(n)*(-1)^A070939(n) = 2*(n==2^(A070939(n)-1)+1)*(-1)^A070939(n) = 2*(n==A053644(n)+1)*(-1)^A070939(n) = 2*(A002487(n-1)==1)*(-1)^A070939(n) for n > 1;
then a(n) = k(n-1)*a(n-1) - a(n-2) - d(n) for n > 2 with a(1) = 0, a(2) = 1.

A004756 Binary expansion starts 100.

Original entry on oeis.org

4, 8, 9, 16, 17, 18, 19, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153
Offset: 1

Views

Author

Keywords

Examples

			18 in binary is 10010, so 18 is in sequence.
		

Crossrefs

Cf. A004754 (10), A004755 (11), A004757 (101), A004758 (110), A004759 (111).

Programs

  • Haskell
    import Data.List (transpose)
    a004756 n = a004756_list !! (n-1)
    a004756_list = 4 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004756_list
    -- Reinhard Zumkeller, Dec 04 2015
    
  • Mathematica
    Select[Range[4, 153], Take[IntegerDigits[#, 2], 3] == {1, 0, 0} &] (* Michael De Vlieger, Aug 07 2016 *)
  • PARI
    a(n)=n+3*2^floor(log(n)/log(2))
    
  • Python
    def A004756(n): return n+(3<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 3*[n==0].
a(n) = n + 3 * 2^floor(log_2(n)) = A004755(n) + A053644(n).
a(2^m+k) = 2^(m+2) + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 07 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A076877 a(n) = A020330(n) / n.

Original entry on oeis.org

3, 5, 5, 9, 9, 9, 9, 17, 17, 17, 17, 17, 17, 17, 17, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 129, 129, 129, 129, 129, 129
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 25 2002

Keywords

Examples

			12 -> '1100' -> '1100'1100' = '11001100' -> 204 = A020330(12): a(12) = A020330(12)/12 = 204/12 = 17.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 1 + 2^Floor[Log2[n] + 1]; Array[a, 50] (* Amiram Eldar, Apr 07 2021 *)

Formula

a(n) = 1 + 2^(1 + Log2(n)), with Log2 = A000523.
a(n) = 1 + 2*A053644(n).
a(n) = 1 + A062383(n).

A101402 a(0)=0, a(1)=1; for n>=2, let k = smallest power of 2 that is >= n, then a(n) = a(k/2) + a(n-1-k/2).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 26, 27, 27, 27
Offset: 0

Views

Author

Odimar Fabeny, Jan 16 2005

Keywords

Comments

Either a(n) = a(n-1) or a(n) = a(n-1) + 1. Proof: Suppose n is a power of 2, then a(n+1) = a(n) + a(0) = a(n). Otherwise let 2m be the largest power of 2 greater than n, so a(n) = a(m) + a(n-1-m) and a(n+1) = a(m) + a(n-m) and then proceed by induction. - Charles R Greathouse IV, Aug 27 2014
It appears that this sequence gives the partial sums of A164349. - Arie Groeneveld, Aug 27 2014
Each term other than zero appears at least twice. Suppose m is a power of 2, then a(2m) and a(4m) appear at least twice by my above comment. Otherwise suppose 3 <= k+2 <= 2m, then a(2m+k) = a(m) + a(m+k-1), a(2m+k+1) = a(m) + a(2m+k), and a(2m+k+2) = a(m) + a(m) + a(m+k+1), so a(2m+k+2) - a(2m+k) = a(m+k+1) - a(m+k-1). So if each term from a(m) to a(2m) appears at least twice then so will each term in a(2m) to a(4m). - Charles R Greathouse IV, Sep 10 2014
a(n) = Theta(n), see link. - Benoit Jubin, Sep 16 2014
The position of where n first appears: 0, 1, 4, 6, 10, 13, 15, 18, 21, 23, 27, 30, 32, 34, 37, 39, 43, 46, 48, 51, 54, 56, 60, 63, 66, 69, ... - Robert G. Wilson v, Sep 19 2014
The (10^k)-th term: 0, 3, 36, 355, 3549, 35494, 354942, ... - Robert G. Wilson v, Sep 19 2014

Examples

			a(2) = a(1) + a(0) = 1 = 1 + 0;
a(3) = a(2) + a(0) = 1 = 1 + 0;
a(4) = a(2) + a(1) = 2 = 1 + 1;
a(5) = a(4) + a(0) = 2 = 2 + 0;
a(6) = a(4) + a(1) = 3 = 2 + 1;
a(7) = a(4) + a(2) = 3 = 2 + 1;
a(8) = a(4) + a(3) = 3 = 2 + 1;
a(9) = a(8) + a(0) = 3 = 3 + 0; ...
The terms fall naturally into blocks of sizes 1,1,1,2,4,8,16,32,...:
0,
1,
1,
1, 2,
2, 3, 3, 3,
3, 4, 4, 4, 5, 5, 6, 6,
6, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 12,
12, 13, 13, 13, 14, 14, ...
Then the definition says that the k-th block is the final term of the previous block added to the sequence starting from the beginning (e.g., 34445566 = 3 + 01112233).
The final terms of the blocks, a(2^k), appear to be given by A164363. - _N. J. A. Sloane_, Aug 27 2014
		

Crossrefs

Programs

  • Haskell
    import Data.Function (on); import Data.List (genericIndex)
    a101402 = genericIndex a101402_list
    a101402_list = 0 : 1 : zipWith ((+) `on` a101402)
                           (tail a053644_list) a053645_list
    -- Reinhard Zumkeller, Aug 27 2014
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Block[{p = 2^(Ceiling[Log[2, n]] - 1)}, a[p] + a[n - 1 - p]]; Table[ a@n, {n, 0, 100}] (* Robert G. Wilson v, Aug 17 2009 *)
  • PARI
    a(n)=if(n<4, n>0, my(k=2^(log(n-.5)\log(2))); a(k) + a(n-1-k)) \\ Charles R Greathouse IV, Aug 25 2014
    

Formula

For n > 1: a(n) = a(A053644(n-1)) + a(A053645(n-1)). - Reinhard Zumkeller, Aug 27 2014

Extensions

Offset corrected by R. J. Mathar, Aug 17 2009
More terms from Robert G. Wilson v, Aug 17 2009

A004759 Binary expansion starts 111.

Original entry on oeis.org

7, 14, 15, 28, 29, 30, 31, 56, 57, 58, 59, 60, 61, 62, 63, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244
Offset: 1

Views

Author

Keywords

Comments

This is the minimal recursive sequence such that a(1)=7, A007814(a(n))= A007814(n) and A010060(a(n))=A010060(n). - Vladimir Shevelev, Apr 23 2009

Examples

			30 in binary is 11110, so 30 is in sequence.
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a004759 n = a004759_list !! (n-1)
    a004759_list = 7 : concat (transpose [zs, map (+ 1) zs])
                       where zs = map (* 2) a004759_list
    -- Reinhard Zumkeller, Dec 03 2015
    
  • Mathematica
    w = {1, 1, 1}; Select[Range[5, 244], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *)
    Sort[FromDigits[#,2]&/@(Flatten[Table[Join[{1,1,1},#]&/@Tuples[{1,0},n],{n,0,5}],1])] (* Harvey P. Dale, Sep 01 2016 *)
  • PARI
    a(n)=n+6*2^floor(log(n)/log(2))
    
  • Python
    def A004759(n): return n+(3<Chai Wah Wu, Jul 13 2022

Formula

a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 6[n==0].
a(n) = n + 6 * 2^floor(log_2(n)) = A004758(n) + A053644(n).
a(n+1) = min{m > a(n): A007814(m) = A007814(n+1) and A010060(m) = A010060(n+1)}. a(2^k) - a(2^k-1) = A103204(k+2), k >= 1. - Vladimir Shevelev, Apr 23 2009
a(2^m+k) = 7*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016

Extensions

Edited by Ralf Stephan, Oct 12 2003

A209859 Rewrite the binary expansion of n from the most significant end, 1 -> 1, 0+1 (one or more zeros followed by one) -> 0, drop the trailing zeros of the original n.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 3, 7, 1, 2, 2, 5, 3, 6, 7, 15, 1, 2, 2, 5, 2, 4, 5, 11, 3, 6, 6, 13, 7, 14, 15, 31, 1, 2, 2, 5, 2, 4, 5, 11, 2, 4, 4, 9, 5, 10, 11, 23, 3, 6, 6, 13, 6, 12, 13, 27, 7, 14, 14, 29, 15, 30, 31, 63, 1, 2, 2, 5, 2, 4, 5, 11, 2, 4, 4, 9, 5, 10, 11, 23, 2, 4, 4, 9, 4, 8, 9, 19, 5, 10, 10, 21, 11, 22, 23, 47, 3, 6, 6, 13, 6, 12, 13, 27, 6, 12, 12, 25, 13
Offset: 0

Views

Author

Antti Karttunen, Mar 24 2012

Keywords

Comments

This is the number k such that the k-th composition in standard order is the reversed sequence of lengths of the maximal anti-runs of the binary indices of n. Here, the binary indices of n are row n of A048793, and the k-th composition in standard order is row k of A066099. For example, the binary indices of 100 are {3,6,7}, with maximal anti-runs ((3,6),(7)), with reversed lengths (1,2), which is the 6th composition in standard order, so a(100) = 6. - Gus Wiseman, Jul 27 2025

Examples

			102 in binary is 1100110, we rewrite it from the left so that first two 1's stay same ("11"), then "001" is rewritten to "0", the last 1 to "1", and we ignore the last 0, thus getting 1101, which is binary expansion of 13, thus a(102) = 13.
		

Crossrefs

This is an "inverse" of A071162, i.e. a(A071162(n)) = n for all n. Bisection: A209639. Used to construct permutation A209862.
Removing duplicates appears to give A358654.
Sorted positions of firsts appearances appear to be A247648+1.
A245563 lists run-lengths of binary indices (ranks A246029), reverse A245562.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Reverse[Length/@Split[bpe[n],#2!=#1+1&]]],{n,0,100}] (* Gus Wiseman, Jul 25 2025 *)
  • Python
    import re
    def a(n): return int(re.sub("0+1", "0", bin(n)[2:].rstrip("0")), 2) if n else 0
    print([a(n) for n in range(109)])  # Michael S. Branicky, Jul 25 2025
  • Scheme
    (define (A209859 n) (let loop ((n n) (s 0) (i (A053644 n))) (cond ((zero? n) s) ((> i n) (if (> (/ i 2) n) (loop n s (/ i 2)) (loop (- n (/ i 2)) (* 2 s) (/ i 4)))) (else (loop (- n i) (+ (* 2 s) 1) (/ i 2))))))
    

Formula

a(n) = a(A000265(n)).

A348296 Irregular table T(n, k), n > 0, k = 1..A000120(n), read by rows; the n-th contains, in ascending order, the distinct powers of 2 summing to n.

Original entry on oeis.org

1, 2, 1, 2, 4, 1, 4, 2, 4, 1, 2, 4, 8, 1, 8, 2, 8, 1, 2, 8, 4, 8, 1, 4, 8, 2, 4, 8, 1, 2, 4, 8, 16, 1, 16, 2, 16, 1, 2, 16, 4, 16, 1, 4, 16, 2, 4, 16, 1, 2, 4, 16, 8, 16, 1, 8, 16, 2, 8, 16, 1, 2, 8, 16, 4, 8, 16, 1, 4, 8, 16, 2, 4, 8, 16, 1, 2, 4, 8, 16, 32
Offset: 1

Views

Author

Rémy Sigrist, Jul 18 2022

Keywords

Examples

			Triangle T(n, k) begins:
  n   n-th row
  --  ------------
   1  [1]
   2  [2]
   3  [1, 2]
   4  [4]
   5  [1, 4]
   6  [2, 4]
   7  [1, 2, 4]
   8  [8]
   9  [1, 8]
  10  [2, 8]
  11  [1, 2, 8]
  12  [4, 8]
  13  [1, 4, 8]
  14  [2, 4, 8]
  15  [1, 2, 4, 8]
		

Crossrefs

Programs

  • Mathematica
    Array[DeleteCases[Union@ NumberExpand[#, 2], 0] &, 32] // Flatten (* Michael De Vlieger, Jul 19 2022 *)
  • PARI
    row(n) = { my (r=vector(hammingweight(n))); for (k=1, #r, n -= r[k] = 2^valuation(n, 2)); return (r) }

Formula

T(n, k) = 2^A133457(n, k).
T(n, 1) = A006519(n).
T(n, A000120(n)) = A053644(n).
Sum_{k = 1..A000120(n)} T(n, k) = n.
Sum_{k = 1..A000120(n)} T(n, k) * (-1)^(k-1) = A065620(n).
Product_{k = 1..A000120(n)} T(n, k) = A059867(n).
T(2*n, k) = 2*T(n, k).

A368781 The maximal exponent in the unique factorization of n in terms of distinct "Fermi-Dirac primes".

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jan 05 2024

Keywords

Comments

First differs from A335428 at n = 36. Differs from A050377, A344417 and A347437 at n = 1 and then at n = 36.
In the unique factorization of n in terms of distinct "Fermi-Dirac primes", n is represented as a product of prime powers (A246655) whose exponents are powers of 2 (A000079). a(n) is the maximal exponent of these prime powers (and not the maximal exponent of the exponents that are powers of 2). Thus, a(n) is a power of 2 for n >= 2.

Examples

			For n = 972 = 2^2 * 3^5, the unique factorization of 972 in terms of distinct "Fermi-Dirac primes" is 2^(2^1) * 3^(2^0) * 3^(2^2). Therefore, a(972) = 2^2 = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^Floor[Log2[Max[FactorInteger[n][[;; , 2]]]]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = if(n > 1, 2^exponent(vecmax(factor(n)[, 2])), 0);
    
  • Python
    from sympy import factorint
    def A368781(n): return 1<1 else 0 # Chai Wah Wu, Apr 11 2025

Formula

a(n) = A053644(A051903(n)).
a(n) = 2^(A299090(n)-1) for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + Sum_{k>=1} (2^(k-1) * (1 - 1/zeta(2^k))) = 1.56056154773294953123... .
a(n) = A051903(A353897(n)). - Amiram Eldar, May 07 2024

A088370 Triangle T(n,k), read by rows, where the n-th row is a binary arrangement of the numbers 1 through n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 3, 2, 4, 1, 5, 3, 2, 4, 1, 5, 3, 2, 6, 4, 1, 5, 3, 7, 2, 6, 4, 1, 5, 3, 7, 2, 6, 4, 8, 1, 9, 5, 3, 7, 2, 6, 4, 8, 1, 9, 5, 3, 7, 2, 10, 6, 4, 8, 1, 9, 5, 3, 11, 7, 2, 10, 6, 4, 8, 1, 9, 5, 3, 11, 7, 2, 10, 6, 4, 12, 8, 1, 9, 5, 13, 3, 11, 7, 2, 10, 6, 4, 12, 8, 1, 9, 5, 13, 3, 11, 7, 2, 10, 6, 14, 4, 12, 8
Offset: 1

Views

Author

Paul D. Hanna, Sep 28 2003

Keywords

Comments

The n-th row differs from the prior row only by the presence of n. See A088371 for the positions in the n-th row that n is inserted.
From Clark Kimberling, Aug 02 2007: (Start)
At A131966, this sequence is cited as the fractal sequence of the Cantor set C.
Recall that C is the set of fractions in [0,1] whose base 3 representation consists solely of 0's and 2's.
Arrange these fractions as follows:
0
0, .2
0, .02, .2
0, .02, .2, .22
0, .002, .02, .2, .22, etc.
Replace each number x by its order of appearance, counting each distinct predecessor of x only once, getting
1;
1, 2;
1, 3, 2;
1, 3, 2, 4;
1, 5, 3, 2, 4;
Concatenate these to get the current sequence, which is a fractal sequence as defined in "Fractal sequences and interspersions".
One property of such a sequence is that it properly contains itself as a subsequence (infinitely many times). (End)
Row n contains one of A003407(n) non-averaging permutations of [n], i.e., a permutation of [n] without 3-term arithmetic progressions. - Alois P. Heinz, Dec 05 2017

Examples

			Row 5 is formed from row 3, {1,3,2} and row 2, {1,2}, like so:
{1,5,3, 2,4} = {1*2-1, 3*2-1, 2*2-1} | {1*2, 2*2}.
Triangle begins:
  1;
  1,  2;
  1,  3, 2;
  1,  3, 2,  4;
  1,  5, 3,  2,  4;
  1,  5, 3,  2,  6,  4;
  1,  5, 3,  7,  2,  6,  4;
  1,  5, 3,  7,  2,  6,  4,  8;
  1,  9, 5,  3,  7,  2,  6,  4,  8;
  1,  9, 5,  3,  7,  2, 10,  6,  4,  8;
  1,  9, 5,  3, 11,  7,  2, 10,  6,  4,  8;
  1,  9, 5,  3, 11,  7,  2, 10,  6,  4, 12,  8;
  1,  9, 5, 13,  3, 11,  7,  2, 10,  6,  4, 12,  8;
  1,  9, 5, 13,  3, 11,  7,  2, 10,  6, 14,  4, 12,  8;
  1,  9, 5, 13,  3, 11,  7, 15,  2, 10,  6, 14,  4, 12,  8;
  1,  9, 5, 13,  3, 11,  7, 15,  2, 10,  6, 14,  4, 12,  8, 16;
  1, 17, 9,  5, 13,  3, 11,  7, 15,  2, 10,  6, 14,  4, 12,  8, 16;
  ...
		

References

  • Clark Kimberling, "Fractal sequences and interspersions," Ars Combinatoria 45 (1997) 157-168.

Crossrefs

Diagonal gives A053644. Cf. A049773. - Alois P. Heinz, Oct 28 2011

Programs

  • Maple
    T:= proc(n) option remember;
          `if`(n=1, 1, [map(x-> 2*x-1, [T(n-iquo(n,2))])[],
                        map(x-> 2*x,   [T(  iquo(n,2))])[]][])
        end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Oct 28 2011
  • Mathematica
    T[1] = {1}; T[n_] := T[n] = Join[q = Quotient[n, 2]; 2*T[n-q]-1, 2*T[q]]; Table[ T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
  • PARI
    {T(n,k) = if(k==0, 1, if(k<=n\2, 2*T(n\2,k) - 1, 2*T((n-1)\2,k-1-n\2) ))}
    for(n=0,20,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n,n) = 2^(floor(log(n)/log(2))). Construction. The 2n-th row is the concatenation of row n, after multiplying each term by 2 and subtracting 1, with row n, after multiplying each term by 2. The (2n-1)-th row is the concatenation of row n, after multiplying each term by 2 and subtracting 1, with row n-1, after multiplying each term by 2.
Sum_{k=1..n} k * A088370(n,k) = A309371(n). - Alois P. Heinz, Jul 26 2019

A086099 a(n) = OR(k AND (n-k): 0<=k<=n), AND and OR bitwise.

Original entry on oeis.org

0, 0, 1, 0, 3, 2, 3, 0, 7, 6, 7, 4, 7, 6, 7, 0, 15, 14, 15, 12, 15, 14, 15, 8, 15, 14, 15, 12, 15, 14, 15, 0, 31, 30, 31, 28, 31, 30, 31, 24, 31, 30, 31, 28, 31, 30, 31, 16, 31, 30, 31, 28, 31, 30, 31, 24, 31, 30, 31, 28, 31, 30, 31, 0, 63, 62, 63, 60, 63, 62, 63, 56, 63, 62
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2003

Keywords

Comments

a(2^n - 1) = 0, a(3*2^n - 1) = 2^n;
A086100(n) = A007088(a(n)).

Examples

			a(4) = (0 AND 4) OR (1 AND 3) OR (2 AND 2) OR (3 AND 1) OR (4 AND 0) -> (000 AND 100) OR (001 AND 011) OR (010 AND 010) OR (011 AND 001) OR (111 AND 000) = 000 OR 011 OR 010 OR 011 OR 000 = 011 -> a(4)=3.
		

Crossrefs

Cf. A003817 (even bisection), A062383.
Cf. A086100 (in binary), A007088.

Programs

  • Haskell
    import Data.Bits ((.&.), (.|.))
    a086099 n = foldl1 (.|.) $ zipWith (.&.) [0..] $ reverse [0..n] :: Integer
    -- Reinhard Zumkeller, Jun 04 2012
    
  • Mathematica
    a[n_] := BitOr @@ Table[BitAnd[k, n - k], {k, 0, n}]; Table[a[n], {n, 0, 73}] (* Jean-François Alcover, Jun 19 2012 *)
  • PARI
    a(n) = n++; 1<Kevin Ryde, Apr 11 2023

Formula

a(2*n) = 2*2^floor(log_2(n)) - 1 = A003817(n).
a(2*n+1) = 2*a(n).
a(n) = A053644(n+1) - A006519(n+1). - Ridouane Oudra, Apr 09 2023
Previous Showing 51-60 of 118 results. Next