cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 43 results. Next

A242486 Numbers n such that A242480(x) = n has no solution.

Original entry on oeis.org

1, 4, 10, 14, 22, 26, 34, 36, 38, 46, 48, 50, 58, 60, 62, 74, 82, 84, 86, 90, 94, 98, 106, 108, 110, 118, 122, 130, 132, 134, 142, 146, 154, 156, 158, 166, 170, 178, 182, 190, 194, 202, 206, 210, 214, 218, 226, 230, 238, 242, 250, 252, 254, 262, 266, 270, 274
Offset: 1

Views

Author

Jaroslav Krizek, May 27 2014

Keywords

Comments

A242480(n) = (n*(n+1)/2) mod n + sigma(n) mod n + antisigma(n) mod n = A142150(n) + A054024(n) + A229110(n) = (A000217(n) mod n) + (A000203(n) mod n) + (A024816(n) mod n).
All values of a(n) are even for n > 1. Complement of A242485.

Examples

			14 is in the sequence because there is no x whose A242480(x) = 14.
		

Crossrefs

A056075 Numbers m such that m divides sigma(m) - d(m).

Original entry on oeis.org

1, 4, 56, 7192, 7232, 7912, 10792, 17272, 30592, 114256, 2154584, 3428368, 44375136, 89245784, 2739393699744, 36993585958528, 47319950478240, 118122891971648, 943226995376128, 2737657760695168, 5020331545072768, 36028789368553472, 40256362055287184, 42381542060395136, 950808877965961856, 2616769087480013696, 3515864044679266304, 4611826686121443328, 9223371897268338688
Offset: 1

Views

Author

Robert G. Wilson v, Jul 26 2000

Keywords

Comments

Or, numbers n such that sigma(n) = k*n + d(n) for some k.
For most terms > 4, sigma(n) = 2*n + d(n), i.e., k=2. However, for the 12th term, k=3.
If p = 2^m-(2m+1) is prime and n = 2^(m-1)*p then sigma(n) = 2*n+d(n), i.e., k=2 and n is in the sequence. 56, 7232, 30592, 36028789368553472, 9223371897268338688 and 29230032746618058364071726105239688547563879792624 are such terms of the sequence. - Farideh Firoozbakht, Aug 19 2013
Note that for m = a(17) = 47319950478240, we have (sigma(m) - d(m))/m = 4. - Max Alekseyev, May 31 2025

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]-DivisorSigma[0, n], n]==0, Print[n]], {n, 1, 10^8}]
  • PARI
    is(n)=my(f=factor(n)); (sigma(f)-numdiv(f))%n==0 \\ Charles R Greathouse IV, Nov 04 2016

Formula

Numbers n such that A000203(n) (mod n) == A000005(n) or A054024(n)=A000005(n). - Labos Elemer, Apr 12 2002

Extensions

a(15) from Giovanni Resta, Nov 07 2019
a(16)-a(29) from Max Alekseyev, May 31 2025

A117553 When adding some positive divisors of n in order from lowest divisor to highest divisor, a(n) is lowest sum achievable which is >= n.

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 16, 14, 24, 24, 31, 18, 21, 20, 22, 32, 36, 24, 24, 31, 42, 40, 28, 30, 42, 32, 63, 48, 54, 48, 37, 38, 60, 56, 50, 42, 54, 44, 84, 78, 72, 48, 52, 57, 93, 72, 98, 54, 66, 72, 64, 80, 90, 60, 78, 62, 96, 104, 127, 84, 78, 68, 126, 96, 74, 72
Offset: 1

Views

Author

Leroy Quet, Mar 28 2006

Keywords

Comments

Often, but not always, a(n)=n+A054024(n). The exceptions to this rule are at n=24, 36, 48, 60, 72, 84,90, 96, 108, ... - R. J. Mathar, Mar 14 2007

Examples

			12's divisors are 1,2,3,4,6 and 12. Adding the divisors in order we have:
1 = 1, 1+2 = 3, 1+2+3 = 6, 1+2+3+4 = 10, 1+2+3+4+6 = 16 and 1+2+3+4+6+12 = 28.
Of these sums, 1+2+3+4+6 = 16 is the lowest which is >= 12. So a(12) = 16.
		

Crossrefs

Programs

  • Maple
    A117553 := proc(n) local divs,a,i ; divs := numtheory[divisors](n) ; a := op(1,divs) ; i := 1 ; while a < n do i := i+1 ; a := a+op(i,divs) ; od ; RETURN(a) ; end: for n from 1 to 80 do printf("%d, ",A117553(n)) ; od ; # R. J. Mathar, Mar 14 2007
  • Mathematica
    Table[Select[Accumulate[Divisors[n]],#>=n&,1],{n,80}]//Flatten (* Harvey P. Dale, Apr 05 2017 *)

Extensions

More terms from R. J. Mathar, Mar 14 2007

A229087 a(n) = sigma(n) mod n - antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.

Original entry on oeis.org

0, 1, -1, 0, -3, -3, -5, 2, -1, 1, -9, 2, -11, -1, 3, 6, -15, -3, -17, -6, 1, -5, -21, 12, -13, -7, -1, -14, -27, 9, -29, 14, -3, -11, -9, -16, -35, -13, -5, 0, -39, 3, -41, 14, 21, -17, -45, -16, -33, 11, -9, 14, -51, -3, -21, -12, -11, -23, -57, 6, -59, -25
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2013

Keywords

Comments

Sequence contains anomalous increased frequency of values 14 (see A229115), a(n) = 14 for n = 32, 44, 52, 68, 76, 92, ... ).

Examples

			For n = 32; a(32 ) = sigma(32) mod 32 - antisigma(32) mod 32 = 63 mod 32 - 465 mod 32 = 31 - 17 = 14.
		

Crossrefs

Cf. A000203 (sigma(n)), A024816 (antisigma(n)).
Cf. A054024 (sigma(n) mod n), A229110(antisigma(n) mod n).
Cf. A229088 (numbers n such that sigma(n) mod n = antisigma(n) mod n).
Cf. A229089 (numbers n such that sigma(n) mod n < antisigma(n) mod n).
Cf. A229090 (numbers n such that sigma(n) mod n > antisigma(n) mod n).

Formula

a(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n).

A229088 Numbers k such that sigma(k) mod k = antisigma(k) mod k, where sigma(k) = A000203(k) = sum of divisors of k, antisigma(k) = A024816(k) = sum of non-divisors of k.

Original entry on oeis.org

1, 4, 40, 224, 360, 2016, 47616, 174592, 293760, 524160, 1571328, 1782144, 3485664, 134209536, 282977280, 492101632, 746444160, 1459956960, 1684126080, 1716728832, 4428914688, 27298252800, 41233360896, 376591138560, 719045268480, 1622308746240
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2013

Keywords

Comments

Numbers k such that A229087(k) = A000203(k) mod k - A024816(k) mod k = A054024(k) - A229110(k) = 0.
Complement of union A229089 and A229090 with respect to A000027; where A229089 = numbers k such that sigma(k) mod k < antisigma(k) mod k, A229090 = numbers k such that sigma(k) mod k > antisigma(k) mod k.
719045268480 and 1622308746240 are also terms. - Donovan Johnson, Oct 25 2013
If a number m is in this sequence and k(m) = A054024(m)/m = A229110(m)/m then k(m) = 0 for odd m (for number 1 and eventually odd multiply-perfect numbers m > 1). Conjecture: k(m) = 1/4 or 3/4 for all even m. Sequence of values k(m): 0, 3/4, 1/4, 1/4, 1/4, 1/4, 3/4, 1/4, 3/4, 1/4, 1/4, 3/4, 3/4, 3/4, 3/4, 1/4, 3/4, 3/4, 3/4, 3/4, 1/4, 3/4, 3/4, ... . Value k(m) = 3/4 also for m = 719045268480 and 1622308746240. - Jaroslav Krizek, Jun 19 2014
Also, the denominator of sigma(k)/k (reduced to lowest terms) of the currently known terms, except 1, are all 4: 1, 7/4, 9/4, 9/4, 13/4, 13/4, 11/4, 9/4, 15/4, 17/4, 13/4, 15/4, 15/4, 11/4, 15/4, 9/4, 19/4, 19/4, 19/4, 15/4, 13/4, 19/4, 15/4. - Michel Marcus, Jun 21 2014
Conjecture: For k>1, numbers k such that GCD(sigma(k), k) = n/4. - Jaroslav Krizek, Sep 23 2014

Examples

			40 is in sequence because sigma(40) mod 40 = 90 mod 40 = antisigma(40) mod 40 = 730 mod 40 = 10.
		

Crossrefs

Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n).

Programs

  • PARI
    for(n=1, 10^9, s=sigma(n); t=n*(n+1)/2; if(s%n==(t-s)%n, print1(n ", "))) /* Donovan Johnson, Oct 24 2013 */

Extensions

a(8)-a(23) from Donovan Johnson, Oct 24 2013
a(24)-a(26) from Jud McCranie, Oct 10 2023

A229090 Numbers n such that sigma(n) mod n > antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisors of n, antisigma(n) = A024816(n) = sum of non-divisors of n.

Original entry on oeis.org

2, 8, 10, 12, 15, 16, 21, 24, 30, 32, 42, 44, 45, 50, 52, 60, 63, 64, 68, 75, 76, 80, 92, 99, 105, 110, 116, 117, 124, 126, 128, 130, 135, 136, 140, 144, 147, 148, 150, 152, 153, 154, 160, 164, 165, 168, 170, 171, 172, 182, 184, 188, 189, 190, 195, 198, 200
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2013

Keywords

Comments

Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n) > 0.
Complement of union A229088 and A229089 with respect to A000027, where A229088 = numbers n such that sigma(n) mod n = antisigma(n) mod n, A229089 = numbers n such that sigma(n) mod n < antisigma(n) mod n.

Examples

			Number 12 is in sequence because sigma(12) mod 12 = 28 mod 12 = 4 > antisigma(12) mod 12 = 50 mod 12 = 2.
		

Crossrefs

Cf. A000203 (sigma(n)), A024816 (antisigma(n)).
Cf. A054024 (sigma(n) mod n), A229110 (antisigma(n) mod n).

Programs

  • Mathematica
    smQ[n_]:=Module[{sig=DivisorSigma[1,n]},Mod[sig,n]>Mod[(n(n+1))/2-sig,n]]; Select[Range[200],smQ] (* Harvey P. Dale, Dec 23 2013 *)

A076495 Smallest x such that sigma(x) mod x = n, or 0 if no such x exists.

Original entry on oeis.org

2, 20, 4, 9, 0, 25, 8, 10, 15, 14, 21, 24, 27, 22, 16, 26, 39, 208, 36, 34, 51, 38, 57, 112, 95, 46, 69, 48, 115, 841, 32, 58, 45, 62, 93, 660, 155, 1369, 162, 44, 63, 1681, 50, 82, 123, 52, 129, 60, 75, 94, 72, 352, 235, 90, 329, 84, 99, 68, 265, 96, 371, 118, 64, 76
Offset: 1

Views

Author

Labos Elemer, Oct 21 2002

Keywords

Comments

At present, the 0 entry for n=5 is only a conjecture.
For n <= 1000, a(5) and a(898) are the only terms not found using x <= 10^11. - Donovan Johnson, Sep 20 2012
10^11 < a(898) <= 140729946996736. - Donovan Johnson, Sep 28 2013
a(898) > 10^13 and the same bound holds for a(5), if it exists. - Giovanni Resta, Apr 02 2014
a(5) > 1.5*10^14, if it exists. - Jud McCranie, Jun 02 2019

Examples

			n=1: a(1) = smallest prime = 2.
n=3: a(3) = 4 since sigma(4) mod 4 = 7 mod 4 = 3.
n=5: Very difficult case (see Comments section).
		

Crossrefs

Programs

  • Mathematica
    f[x_] := s=Mod[DivisorSigma[1, n], n]; t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 1, 10000000}]; t
  • PARI
    a(n)=my(k);while(sigma(k++)%k!=n,);k \\ Charles R Greathouse IV, Dec 28 2013

A229089 Numbers n such that sigma(n) mod n < antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.

Original entry on oeis.org

3, 5, 6, 7, 9, 11, 13, 14, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 72, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2013

Keywords

Comments

Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n =A054024(n) - A229110(n) < 0.
Complement of union A229088 and A229090 with respect to A000027, where
A229088 = numbers n such that sigma(n) mod n = antisigma(n) mod n,
A229090 = numbers n such that sigma(n) mod n > antisigma(n) mod n.

Examples

			Number 11 is in sequence because sigma(11) mod 11 = 12 mod 11 = 1 < antisigma(11) mod 11 = 54 mod 11 = 10.
		

Crossrefs

Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n).

Programs

  • Mathematica
    Select[Range[100],Mod[Total[Complement[Range[#],Divisors[#]]],#]> Mod[ DivisorSigma[ 1,#],#]&] (* Harvey P. Dale, Jan 24 2022 *)

A054027 Numbers that do not divide their sum of divisors.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

Does not contain numbers like 1, 120, 672, 30240, 32760, 523776,.. which are in A132999. - R. J. Mathar, Jun 13 2025

Crossrefs

Complement of A007691. Cf. A000203, A054024.

Programs

  • Maple
    with(numtheory): [seq(`if`(sigma(i) mod i <> 0,i,print( )),i=1..90)];
  • Mathematica
    Select[Range[100],!Divisible[DivisorSigma[1,#],#]&] (* Harvey P. Dale, May 29 2019 *)
  • PARI
    isok(m) = (sigma(m) % m) != 0; \\ Michel Marcus, Jun 20 2021

A055681 Numbers k that divide sigma(k)-phi(k).

Original entry on oeis.org

1, 2, 12, 42, 1242, 75960, 1447488, 3506976, 6137440, 10834488, 17156160, 90288000, 431440416, 454460160, 704592000, 1385119360, 1588268480, 10674673152, 24913095480, 31103703540, 56015374080, 80767843200, 129631788000, 463308768000, 469897798656, 834460413696
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

a(37) > 10^13. - Giovanni Resta, Jun 12 2013

Crossrefs

Programs

  • Maple
    with(numtheory): A055681:=n->`if`(sigma(n)-phi(n) mod n=0,n,NULL): seq(A055681(n), n=1..10^5); # Wesley Ivan Hurt, Sep 13 2014
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n]-EulerPhi[n], n]==0, Print[n]], {n, 1, 10^9}]
  • PARI
    for(n=1,10^8,if((sigma(n)-eulerphi(n))%n==0,print1(n,", "))) \\ Derek Orr, Sep 13 2014

Extensions

a(16)-a(26) from Donovan Johnson, Feb 28 2012
Previous Showing 21-30 of 43 results. Next