cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A115353 The mode of the digits of n (using smallest mode if multimodal).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Rick L. Shepherd, Jan 21 2006

Keywords

Comments

a(101)=1 and A054054(101)=0, but all previous terms are equivalent.

Examples

			a(12)=1 because 1, 2, the digits of 12, each occur the same number of times and 1 is the smaller of the two modes.
a(101)=1 because 1 is the unique mode of 1, 0, 1 (occurring twice while 0 appears only once).
		

Crossrefs

Cf. A054054 (Smallest digit of n).

Programs

  • MATLAB
    function nth_term=A115353(n)
         nth_term=mode((num2str(n)-'0'));
    end
    sequence = arrayfun(@A115353, linspace(0,105,106))
    % Bence BernĂ¡th, Jan 06 2023
    
  • Mathematica
    a[n_] := Min[Commonest[IntegerDigits[n]]]; Array[a,105,0] (* Stefano Spezia, Jan 08 2023 *)
  • Python
    from statistics import mode
    def a(n): return int(mode(sorted(str(n))))
    print([a(n) for n in range(105)]) # Michael S. Branicky, Jan 08 2023

A284063 Numbers whose smallest decimal digit is 2.

Original entry on oeis.org

2, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92, 222, 223, 224, 225, 226, 227, 228, 229, 232, 233, 234, 235, 236, 237, 238, 239, 242, 243, 244, 245, 246, 247, 248, 249, 252, 253, 254, 255, 256, 257, 258, 259, 262, 263, 264, 265, 266, 267, 268
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054054(n) = 2.
Prime terms are in A106102.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), this sequence (k = 2), A284064 (k = 3), A284065 (k = 4), A284066 (k = 5), A284067 (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 2]
    
  • Mathematica
    Select[Range[300], Min[IntegerDigits[#]] == 2 &] (* Alonso del Arte, Mar 19 2017 *)
  • PARI
    isok(n) = vecmin(digits(n)) == 2; \\ Michel Marcus, Mar 25 2017
    
  • Python
    def ok(n): return '2' == min(str(n))
    print([m for m in range(269) if ok(m)]) # Michael S. Branicky, Feb 22 2021

A284065 Numbers whose smallest decimal digit is 4.

Original entry on oeis.org

4, 44, 45, 46, 47, 48, 49, 54, 64, 74, 84, 94, 444, 445, 446, 447, 448, 449, 454, 455, 456, 457, 458, 459, 464, 465, 466, 467, 468, 469, 474, 475, 476, 477, 478, 479, 484, 485, 486, 487, 488, 489, 494, 495, 496, 497, 498, 499, 544, 545, 546, 547, 548, 549, 554
Offset: 1

Views

Author

Jaroslav Krizek, Mar 19 2017

Keywords

Comments

Numbers n such that A054054(n) = 4.
Prime terms are in A106104.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), A284063 (k = 2), A284064 (k = 3), this sequence (k = 4), A284066 (k = 5), A284067 (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 4]
    
  • Mathematica
    With[{k = 4}, Select[Range@ 554, And[Total@ Take[#, k] == 0, #[[k + 1]] > 0] &@ RotateRight@ DigitCount@ # &]] (* Michael De Vlieger, Mar 20 2017 *)
    (* or *)
    Select[Range[1000], Min[IntegerDigits[#]] == 4 &] (* Giovanni Resta, Mar 22 2017 *)
  • PARI
    isok(n) = vecmin(digits(n)) == 4; \\ Michel Marcus, Mar 25 2017

A284066 Numbers whose smallest decimal digit is 5.

Original entry on oeis.org

5, 55, 56, 57, 58, 59, 65, 75, 85, 95, 555, 556, 557, 558, 559, 565, 566, 567, 568, 569, 575, 576, 577, 578, 579, 585, 586, 587, 588, 589, 595, 596, 597, 598, 599, 655, 656, 657, 658, 659, 665, 675, 685, 695, 755, 756, 757, 758, 759, 765, 775, 785, 795, 855
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2017

Keywords

Comments

Numbers n such that A054054(n) = 5.
Prime terms are in A106105.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), A284063 (k = 2), A284064 (k = 3), A284065 (k = 4), this sequence (k = 5), A284067 (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 5]
    
  • Mathematica
    Select[Range[1000], Min[IntegerDigits[#]] == 5 &] (* Giovanni Resta, Mar 23 2017 *)
  • PARI
    isok(n) = vecmin(digits(n)) == 5; \\ Michel Marcus, Mar 25 2017

A284067 Numbers whose smallest decimal digit is 6.

Original entry on oeis.org

6, 66, 67, 68, 69, 76, 86, 96, 666, 667, 668, 669, 676, 677, 678, 679, 686, 687, 688, 689, 696, 697, 698, 699, 766, 767, 768, 769, 776, 786, 796, 866, 867, 868, 869, 876, 886, 896, 966, 967, 968, 969, 976, 986, 996, 6666, 6667, 6668, 6669, 6676, 6677, 6678
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2017

Keywords

Comments

Numbers n such that A054054(n) = 6.
Prime terms are in A106106.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), A284063 (k = 2), A284064 (k = 3), A284065 (k = 4), A284066 (k = 5), this sequence (k = 6), A284068 (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 6]
    
  • Mathematica
    Select[Range[1000], Min[IntegerDigits[#]] == 6 &] (* Giovanni Resta, Mar 23 2017 *)
  • PARI
    isok(n) = vecmin(digits(n)) == 6; \\ Michel Marcus, Mar 25 2017

A284068 Numbers whose smallest decimal digit is 7.

Original entry on oeis.org

7, 77, 78, 79, 87, 97, 777, 778, 779, 787, 788, 789, 797, 798, 799, 877, 878, 879, 887, 897, 977, 978, 979, 987, 997, 7777, 7778, 7779, 7787, 7788, 7789, 7797, 7798, 7799, 7877, 7878, 7879, 7887, 7888, 7889, 7897, 7898, 7899, 7977, 7978, 7979, 7987, 7988, 7989
Offset: 1

Views

Author

Jaroslav Krizek, Mar 23 2017

Keywords

Comments

Numbers n such that A054054(n) = 7.
Prime terms are in A106107.

Crossrefs

Cf. Sequences of numbers whose smallest decimal digit is k (for k = 0..9): A011540 (k = 0), A284062 (k = 1), A284063 (k = 2), A284064 (k = 3), A284065 (k = 4), A284066 (k = 5), A284067 (k = 6), this sequence (k = 7), A284069 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Minimum(Setseq(Set(Sort(&cat[Intseq(n)])))) eq 7]
    
  • Mathematica
    Select[Range[8000], Min[IntegerDigits[#]] == 7 &] (* Giovanni Resta, Mar 23 2017 *)
  • PARI
    isok(n) = vecmin(digits(n)) == 7; \\ Michel Marcus, Mar 25 2017

A262188 Table read by rows: row n contains all distinct palindromes contained as substrings in decimal representation of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 1, 11, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 0, 2, 1, 2, 2, 22, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 0, 3, 1, 3, 2, 3, 3, 33, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 0, 4, 1, 4, 2, 4, 3, 4, 4, 44, 4, 5, 4, 6, 4
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 14 2015

Keywords

Comments

Length of row n = A262190(n);
T(n,0) = A054054(n);
T(n,A262190(n)-1) = A047813(n).

Examples

			.     n |  T(n,*)           n |  T(n,*)              n |  T(n,*)
.  -----+-----------    ------+-------------    -------+--------------
.   100 |  0,1           1000 |  0,1             10000 |  0,1
.   101 |  0,1,101       1001 |  0,1,1001        10001 |  0,1,10001
.   102 |  0,1,2         1002 |  0,1,2           10002 |  0,1,2
.   103 |  0,1,3         1003 |  0,1,3           10003 |  0,1,3
.   104 |  0,1,4         1004 |  0,1,4           10004 |  0,1,4
.   105 |  0,1,5         1005 |  0,1,5           10005 |  0,1,5
.   106 |  0,1,6         1006 |  0,1,6           10006 |  0,1,6
.   107 |  0,1,7         1007 |  0,1,7           10007 |  0,1,7
.   108 |  0,1,8         1008 |  0,1,8           10008 |  0,1,8
.   109 |  0,1,9         1009 |  0,1,9           10009 |  0,1,9
.   110 |  0,1,11        1010 |  0,1,101         10010 |  0,1,1001
.   111 |  1,11,111      1011 |  0,1,11,101      10011 |  0,1,11,1001
.   112 |  1,2,11        1012 |  0,1,2,101       10012 |  0,1,2,1001
.   113 |  1,3,11        1013 |  0,1,3,101       10013 |  0,1,3,1001
.   114 |  1,4,11        1014 |  0,1,4,101       10014 |  0,1,4,1001
.   115 |  1,5,11        1015 |  0,1,5,101       10015 |  0,1,5,1001
.   116 |  1,6,11        1016 |  0,1,6,101       10016 |  0,1,6,1001
.   117 |  1,7,11        1017 |  0,1,7,101       10017 |  0,1,7,1001
.   118 |  1,8,11        1018 |  0,1,8,101       10018 |  0,1,8,1001
.   119 |  1,9,11        1019 |  0,1,9,101       10019 |  0,1,9,1001
.   120 |  0,1,2         1020 |  0,1,2           10020 |  0,1,2
.   121 |  1,2,121       1021 |  0,1,2           10021 |  0,1,2
.   122 |  1,2,22        1022 |  0,1,2,22        10022 |  0,1,2,22
.   123 |  1,2,3         1023 |  0,1,2,3         10023 |  0,1,2,3
.   124 |  1,2,4         1024 |  0,1,2,4         10024 |  0,1,2,4
.   125 |  1,2,5         1025 |  0,1,2,5         10025 |  0,1,2,5  .
		

Crossrefs

Cf. A262190 (row lengths), A054054 (left edge), A047813 (right edge), A136522, A002113.

Programs

  • Haskell
    import Data.List (inits, tails, nub, sort)
    a262188 n k = a262188_tabf !! n !! k
    a262188_row n = a262188_tabf !! n
    a262188_tabf = map (sort . nub . map (foldr (\d v -> 10 * v + d) 0) .
       filter (\xs -> length xs == 1 || last xs > 0 && reverse xs == xs) .
              concatMap (tail . inits) . tails) a031298_tabf
    
  • PARI
    A262188_row(n,b=10)=Set(concat(vector(logint(n+!n,b)+1,m,m=n\=b^(m>1);select(is_A002113,vector(logint(m+!m,b)+1,k,m%b^k))))) \\ M. F. Hasler, Jun 19 2018

A115300 Greatest digit of n * least digit of n.

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0, 8
Offset: 1

Views

Author

Rick L. Shepherd, Jan 20 2006

Keywords

Comments

a(101) = 0 and A111707(101) = 1, but all previous terms match.
a(n) = A169669(n) for n <= 100.

Examples

			a(3) = 3 * 3 = 9, a(232) = 3 * 2 = 6, a(1889009898) = 9 * 0 = 0.
		

Crossrefs

Cf. A037904 (greatest-least), A115299 (greatest+least), A111707.

Programs

  • Haskell
    a115300 n = a054054 n * a054055 n  -- Reinhard Zumkeller, Apr 29 2015
    
  • Mathematica
    Array[Max[#] * Min[#] &@ IntegerDigits[#] &, 81] (* James C. McMahon, Aug 18 2024 *)
  • PARI
    a(n) = my(d=digits(n)); vecmin(d)*vecmax(d); \\ Michel Marcus, Aug 18 2024
  • Python
    def a(n): d = list(map(int, str(n))); return max(d) * min(d)
    print([a(n) for n in range(1, 82)]) # Michael S. Branicky, Dec 12 2023
    

Formula

a(n) = A054054(n)*A054055(n). - Reinhard Zumkeller, Apr 29 2015

A072544 Numbers whose smallest decimal digit is also the initial digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 55, 56, 57, 58, 59, 66, 67, 68, 69, 77, 78, 79, 88, 89, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 04 2002

Keywords

Comments

A054054(a(n)) = A000030(a(n));
the sequence differs from A009994, A032857 and A032898: a(65)=121 is not in A009994, a(58)=113 is not in A032857 and a(56)=111 is not in A032898.

Crossrefs

Programs

  • Haskell
    a072544 n = a072544_list !! (n-1)
    a072544_list = [x | x <- [0..], a054054 x == a000030 x]
    -- Reinhard Zumkeller, Apr 25 2012
  • Mathematica
    sddiQ[n_]:=Module[{idn=IntegerDigits[n]},First[idn]==Min[idn]]; Select[ Range[ 0,130],sddiQ] (* Harvey P. Dale, Oct 30 2011 *)

A097385 a(n) = (largest digit of n)^(smallest digit of n) + n.

Original entry on oeis.org

1, 2, 6, 30, 260, 3130, 46662, 823550, 16777224, 387420498, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 21, 23, 26, 32, 40, 50, 62, 76, 92, 110, 31, 34, 41, 60, 98, 160, 252, 380, 550, 768, 41, 45, 58, 107, 300, 670, 1342, 2448, 4144, 6610, 51, 56, 77, 178, 679, 3180
Offset: 0

Views

Author

Jason Earls, Aug 18 2004

Keywords

Examples

			a(2345) = 2370 because 5^2 + 2345 = 2370.
		

Crossrefs

Programs

  • Python
    def a(n): return int(max(s:=str(n)))**int(min(s)) + n
    print([a(n) for n in range(56)]) # Michael S. Branicky, Jul 21 2025

Formula

a(n) = A054055(n)^A054054(n) + n. - Mia Boudreau, Jul 17 2025

Extensions

a(0) corrected and 2 terms merged by Mia Boudreau, Jul 16 2025
Previous Showing 11-20 of 54 results. Next