cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A236915 Number T(n,k) of equivalence classes of ways of placing k 8 X 8 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=8, 0<=k<=floor(n/8)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 25, 5, 1, 1, 15, 79, 65, 14, 1, 21, 187, 377, 174, 1, 21, 351, 1365, 1234, 1, 28, 606, 3900, 6124, 1, 28, 948, 9282, 23259, 1, 36, 1426, 19726, 73204, 1, 36, 2026, 38046, 199436
Offset: 8

Views

Author

Keywords

Comments

The first 16 rows of T(n,k) are:
.\ k 0 1 2 3 4
n
8 1 1
9 1 1
10 1 3
11 1 3
12 1 6
13 1 6
14 1 10
15 1 10
16 1 15 25 5 1
17 1 15 79 65 14
18 1 21 187 377 174
19 1 21 351 1365 1234
20 1 28 606 3900 6124
21 1 28 948 9282 23259
22 1 36 1426 19726 73204
23 1 36 2026 38046 199436

Examples

			T(16,3) = 5 because the number of equivalence classes of ways of placing 3 8 X 8 square tiles in an 16 X 16 square under all symmetry operations of the square is 5. The portrayal of an example from each equivalence class is:
._____________________        _____________________
|          |          |      |          |__________|
|          |          |      |          |          |
|          |          |      |          |          |
|     .    |     .    |      |     .    |          |
|          |          |      |          |     .    |
|          |          |      |          |          |
|          |          |      |          |          |
|__________|__________|      |__________|          |
|          |          |      |          |__________|
|          |          |      |          |          |
|          |          |      |          |          |
|    .     |          |      |     .    |          |
|          |          |      |          |          |
|          |          |      |          |          |
|          |          |      |          |          |
|__________|__________|      |__________|__________|
.
._____________________        _____________________
|          |          |      |          |          |
|          |__________|      |          |          |
|          |          |      |          |__________|
|     .    |          |      |     .    |          |
|          |          |      |          |          |
|          |     .    |      |          |          |
|          |          |      |          |     .    |
|__________|          |      |__________|          |
|          |          |      |          |          |
|          |__________|      |          |          |
|          |          |      |          |__________|
|     .    |          |      |     .    |          |
|          |          |      |          |          |
|          |          |      |          |          |
|          |          |      |          |          |
|__________|__________|      |__________|__________|
.
._____________________
|          |          |
|          |          |
|          |          |
|     .    |__________|
|          |          |
|          |          |
|          |          |
|__________|     .    |
|          |          |
|          |          |
|          |          |
|     .    |__________|
|          |          |
|          |          |
|          |          |
|__________|__________|
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 8
T(n,1) = (floor((n-8)/2)+1)*(floor((n-8)/2+2))/2, n >= 8
T(c+2*8,2) = A131474(c+1)*(8-1) + A000217(c+1)*floor(8^2/4) + A014409(c+2), 0 <= c < 8, c even
T(c+2*8,2) = A131474(c+1)*(8-1) + A000217(c+1)*floor((8-1)(8-3)/4) + A014409(c+2), 0 <= c < 8, c odd
T(c+2*8,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((8-c-1)/2) + A131941(c+1)*floor((8-c)/2)) + S(c+1,3c+2,3), 0 <= c < 8 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
A236915(23,3), c = 7

A236936 Number T(n,k) of equivalence classes of ways of placing k 9 X 9 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=9, 0<=k<=floor(n/9)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 1, 15, 30, 5, 1, 1, 21, 96, 74, 14, 1, 21, 221, 413, 174, 1, 28, 417, 1525, 1234, 1, 28, 705, 4290, 6124, 1, 36, 1107, 10269, 23259, 1, 36, 1638, 21630, 73204, 1, 45, 2334, 41790, 199436
Offset: 9

Views

Author

Keywords

Examples

			The first 17 rows of T(n,k) are:
.\ k  0      1      2      3      4
n
9     1      1
10    1      1
11    1      3
12    1      3
13    1      6
14    1      6
15    1     10
16    1     10
17    1     15
18    1     15     30      5      1
19    1     21     96     74     14
20    1     21    221    413    174
21    1     28    417   1525   1234
22    1     28    705   4290   6124
23    1     36   1107  10269  23259
24    1     36   1638  21630  73204
25    1     45   2334  41790 199436
.
T(18,3) = 5 because the number of equivalence classes of ways of placing 3 9 X 9 square tiles in an 18 X 18 square under all symmetry operations of the square is 5.
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 9
T(n,1) = (floor((n-9)/2)+1)*(floor((n-9)/2+2))/2, n >= 9
T(c+2*9,2) = A131474(c+1)*(9-1) + A000217(c+1)*floor(9^2/4) + A014409(c+2), 0 <= c < 9, c even
T(c+2*9,2) = A131474(c+1)*(9-1) + A000217(c+1)*floor((9-1)(9-3)/4) + A014409(c+2), 0 <= c < 9, c odd
T(c+2*9,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((9-c-1)/2) + A131941(c+1)*floor((9-c)/2)) + S(c+1,3c+2,3), 0 <= c < 9 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
A236915(23,3), c = 7
A236936(26,3), c = 8

A236939 Number T(n,k) of equivalence classes of ways of placing k 10 X 10 tiles in an n X n square under all symmetry operations of the square; irregular triangle T(n,k), n>=10, 0<=k<=floor(n/10)^2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 6, 1, 10, 1, 10, 1, 15, 1, 15, 1, 21, 36, 6, 1, 1, 21, 113, 80, 14, 1, 28, 261, 461, 174, 1, 28, 483, 1665, 1234, 1, 36, 819, 4725, 6124, 1, 36, 1266, 11193, 23259, 1, 45, 1878, 23646, 73204
Offset: 10

Views

Author

Keywords

Examples

			The first 17 rows of T(n,k) are:
.\ k  0     1     2     3     4
n
10    1     1
11    1     1
12    1     3
13    1     3
14    1     6
15    1     6
16    1    10
17    1    10
18    1    15
19    1    15
20    1    21    36     6     1
21    1    21   113    80    14
22    1    28   261   461   174
23    1    28   483  1665  1234
24    1    36   819  4725  6124
25    1    36  1266 11193 23259
26    1    45  1878 23646 73204
.
T(20,3) = 6 because the number of equivalence classes of ways of placing 3 10 X 10 square tiles in a 20 X 20 square under all symmetry operations of the square is 6.
		

Crossrefs

Formula

It appears that:
T(n,0) = 1, n>= 10
T(n,1) = (floor((n-10)/2)+1)*(floor((n-10)/2+2))/2, n >= 10
T(c+2*10,2) = A131474(c+1)*(10-1) + A000217(c+1)*floor(10^2/4) + A014409(c+2), 0 <= c < 10, c even
T(c+2*10,2) = A131474(c+1)*(10-1) + A000217(c+1)*floor((10-1)(10-3)/4) + A014409(c+2), 0 <= c < 10, c odd
T(c+2*10,3) = (c+1)(c+2)/2(2*A002623(c-1)*floor((10-c-1)/2) + A131941(c+1)*floor((10-c)/2)) + S(c+1,3c+2,3), 0 <= c < 10 where
S(c+1,3c+2,3) =
A054252(2,3), c = 0
A236679(5,3), c = 1
A236560(8,3), c = 2
A236757(11,3), c = 3
A236800(14,3), c = 4
A236829(17,3), c = 5
A236865(20,3), c = 6
A236915(23,3), c = 7
A236936(26,3), c = 8
A236939(29,3), c = 9

A019318 Number of inequivalent ways of choosing n squares from an n X n board, considering rotations and reflections to be the same.

Original entry on oeis.org

1, 2, 16, 252, 6814, 244344, 10746377, 553319048, 32611596056, 2163792255680, 159593799888052, 12952412056879996, 1147044793316531040, 110066314584030859544, 11375695977099383509351, 1259843950257390597789296, 148842380543159458506703546, 18685311541775061906510072648, 2483858381692984848273972297368, 348545122958862200122401771463328
Offset: 1

Views

Author

Mario Velucchi (mathchess(AT)velucchi.it)

Keywords

Comments

Number of n X n binary matrices with n ones under action of dihedral group of the square D_4.

Examples

			For n=3 the 16 solutions are
111 110 110 110 110 110 110 101 101 101 100 100 100 010 010 010
000 100 010 001 000 000 000 010 000 000 011 010 001 110 101 010
000 000 000 000 100 010 001 000 100 010 000 001 010 000 000 010
		

Crossrefs

Cf. A054252 and A014409.

Programs

  • Mathematica
    p[a_, b_, n_] := If[EvenQ[n], (a+b)^(n^2) + 2*(a+b)^n*(a^2 + b^2)^((n^2 - n)/2) + 3*(a^2 + b^2)^(n^2/2) + 2*(a^4 + b^4)^(n^2/4), (a+b)^(n^2) + 2*(a+b)*(a^4 + b^4)^((n^2-1)/4) + (a+b)*(a^2 + b^2)^((n^2-1)/2) + 4*(a+b)^n*(a^2 + b^2)^((n^2-n)/2)]; Table[Coefficient[p[a, 1, k], a, k]/8, {k, 1, 20}] (* Jean-François Alcover, Nov 12 2013, translated from Pari *)
  • PARI
    {p(a,b,N) = if(N%2==0, (a+b)^(N^2) + 2*(a+b)^N*(a^2+b^2)^((N^2-N)/2) + 3*(a^2+b^2)^(N^2/2) + 2*(a^4+b^4)^(N^2/4), (a+b)^(N^2) + 2*(a+b)*(a^4+b^4)^((N^2-1)/4) + (a+b)*(a^2+b^2)^((N^2-1)/2) + 4*(a+b)^N*(a^2+b^2)^((N^2-N)/2))} for(k=1,20,print1(polcoeff(p(a,1,k),k)/8,","))

Formula

See Velucchi link or the PARI program. Note that the polynomial whose coefficient of a^k is divided by 8 differs based upon whether the term's index is even or odd.
Let A(n) = C(n^2, n); B(n) = C((n^2-(n mod 2))/2, n/2); C(n) = C((n^2-(n mod 2))/4, n/4); D(n) = Sum(p = 0 to [n/2], C((n^2-n)/2, p)*C(n, n-2p)). Then a(n) = (A(n) + 3B(n) + 2C(n) + 2D(n))/8 if n == 0 (mod 4), (A(n) + B(n) + 2C(n) + 4D(n))/8 if n == 1 (mod 4), (A(n) + 3B(n) + 2D(n))/8 if n == 2 (mod 4), (A(n) + B(n) + 4D(n))/8 if n == 3 (mod 4). - David W. Wilson, May 29 2003

Extensions

More terms from Rick L. Shepherd and David W. Wilson, May 28 2003

A082966 Number of inequivalent ways (mod D_4) three checkers can be placed on an n X n board.

Original entry on oeis.org

0, 1, 16, 77, 319, 920, 2397, 5278, 10874, 20355, 36390, 61171, 99441, 154882, 235179, 346060, 499172, 702933, 974124, 1324585, 1777555, 2349116, 3070441, 3962762, 5066814, 6409975, 8044322, 10004463, 12355749, 15141190, 18441495, 22309336, 26843016, 32106217
Offset: 1

Views

Author

Vladeta Jovovic, May 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x^2*(x^8 - x^7 - 4 x^6 - 55 x^5 - 56 x^4 - 83 x^3 - 28 x^2 - 13 x - 1)/((x - 1)^7*(x + 1)^4), {x, 0, 34}], x] (* Michael De Vlieger, Oct 03 2016 *)

Formula

a(n) = (1/48)*(n-1)*(n^5+n^4-2*n^3+14*n^2-5*n+3) if n is odd;
a(n) = (1/48)*n*(n-1)*(n^2-n+2)*(n^2+2*n-2) if n is even.
G.f.: x^2*(x^8-x^7-4*x^6-55*x^5-56*x^4-83*x^3-28*x^2-13*x-1) / ((x-1)^7*(x+1)^4). - Colin Barker, Jul 11 2013
a(n) = A054247(n, 3) = A054247(n, n^2-3), n >= 1. - Wolfdieter Lang, Oct 03 2016
E.g.f.: (x*(3 + 24*x + 88*x^2 + 62*x^3 + 15*x^4 + x^5)*cosh(x) + (-3 + 39*x^2 + 80*x^3 + 62*x^4 + 15*x^5 + x^6)*sinh(x))/48. - Stefano Spezia, Apr 14 2022

Extensions

More terms from Colin Barker, Jul 11 2013

A343875 Array read by antidiagonals: T(n,k) is the number of n X n nonnegative integer matrices with sum of elements equal to k, up to rotations and reflections.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 3, 1, 0, 1, 4, 11, 3, 1, 0, 1, 8, 31, 24, 6, 1, 0, 1, 10, 84, 113, 55, 6, 1, 0, 1, 16, 198, 528, 410, 99, 10, 1, 0, 1, 20, 440, 2003, 2710, 1091, 181, 10, 1, 0, 1, 29, 904, 6968, 15233, 10488, 2722, 288, 15, 1, 0, 1, 35, 1766, 21593, 75258, 82704, 34399, 5806, 461, 15, 1
Offset: 0

Views

Author

Andrew Howroyd, May 06 2021

Keywords

Examples

			Array begins:
=====================================================
n\k | 0  1   2    3     4      5       6        7
----+------------------------------------------------
  0 | 1  0   0    0     0      0       0        0 ...
  1 | 1  1   1    1     1      1       1        1 ...
  2 | 1  1   3    4     8     10      16       20 ...
  3 | 1  3  11   31    84    198     440      904 ...
  4 | 1  3  24  113   528   2003    6968    21593 ...
  5 | 1  6  55  410  2710  15233   75258   331063 ...
  6 | 1  6  99 1091 10488  82704  563864  3376134 ...
  7 | 1 10 181 2722 34399 360676 3235551 25387944 ...
  ...
		

Crossrefs

Rows n=0..3 are A000007, A000012, A005232, A054343.
Columns 0..1 are A000012, A008805(n-1).
Cf. A054252 (binary case), A318795, A343097, A343874.

Programs

  • PARI
    U(n,s) = {(s(1)^(n^2) + s(1)^(n%2)*(2*s(4)^(n^2\4) + s(2)^(n^2\2)) + 2*s(1)^n*s(2)^(n*(n-1)/2) + 2*(s(1)^(n%2)*s(2)^(n\2))^n )/8}
    T(n,k)={polcoef(U(n,i->1/(1-x^i) + O(x*x^k)), k)}

A231655 Triangle T(n, k) read by rows giving number of non-equivalent ways to choose k points in an equilateral triangle grid of side n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 4, 2, 1, 1, 3, 10, 25, 41, 48, 41, 25, 10, 3, 1, 1, 4, 22, 87, 244, 526, 870, 1110, 1110, 870, 526, 244, 87, 22, 4, 1, 1, 5, 41, 238, 1029, 3450, 9147, 19524, 34104, 49231, 59038, 59038, 49231, 34104, 19524, 9147, 3450, 1029, 238
Offset: 0

Views

Author

Heinrich Ludwig, Nov 14 2013

Keywords

Comments

Number of orbits under dihedral group D_6 of order 6. - N. J. A. Sloane, Sep 12 2019

Examples

			Triangle T(n, k) is irregularly shaped: 0 <= k <= n*(n+1)/2+1. The first row corresponds to n = 1, the first column corresponds to k = 0. Rows are palindromic.
  1,  1;
  1,  1,  1,  1;
  1,  2,  4,  6,  4,  2,  1;
  1,  3, 10, 25, 41, 48, 41, 25, 10,  3,  1;
  ...
There are T(3, 2) = 4 nonisomorphic choices of 2 points (X) in an equilateral triangle grid of side 3:
      X       .       .       X
     . .     X X     . .     X .
    . X .   . . .   X . X   . . .
		

Crossrefs

A242279 Number of inequivalent (mod D_4) ways four checkers can be placed on an n X n board.

Original entry on oeis.org

1, 23, 252, 1666, 7509, 26865, 79920, 209096, 491425, 1064575, 2150076, 4104738, 7458437, 13005041, 21857984, 35598880, 56353185, 87019191, 131364700, 194364050, 282314901, 403316353, 567402672, 787201416, 1078078209, 1459020095, 1952782300, 2587048786, 3394568325
Offset: 2

Views

Author

Heinrich Ludwig, May 10 2014

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5), {x, 0, 20}], x] (* Vaclav Kotesovec, May 10 2014 *)
    LinearRecurrence[{4,-1,-16,19,20,-45,0,45,-20,-19,16,1,-4,1},{0,0,1,23,252,1666,7509,26865,79920,209096,491425,1064575,2150076,4104738},40] (* Harvey P. Dale, May 06 2018 *)

Formula

a(n) = (n^8 - 6*n^6 + 40*n^4 - 48*n^3 + 16*n^2 + IF(MOD(n, 2) = 1)*(14*n^4 - 48*n^3 + 34*n^2 - 3))/192.
G.f.: x^2*(1 + 19*x + 161*x^2 + 697*x^3 + 1446*x^4 + 2070*x^5 + 1422*x^6 + 766*x^7 + 105*x^8 + 31*x^9 + x^10 + x^11) / ((1-x)^9 * (1+x)^5). - Vaclav Kotesovec, May 10 2014
a(n) = A054772(n, 4), n >= 2. - Wolfdieter Lang, Oct 03 2016

A242358 Number of inequivalent (mod D_4) ways five checkers can be placed on an n X n board.

Original entry on oeis.org

23, 567, 6814, 47358, 239511, 954226, 3207212, 9414828, 24862239, 60136329, 135311658, 286229762, 574460495, 1101240084, 2028333848, 3605765688, 6211552455, 10402472811, 16984387958, 27099325638, 42342870823, 64905898662, 97761436356, 144885584740, 211543443215
Offset: 3

Views

Author

Heinrich Ludwig, May 11 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[x^3*(-23 - 452*x - 4071*x^2 - 16016*x^3 - 40397*x^4 - 59335*x^5 - 61954*x^6 - 38236*x^7 - 17221*x^8 - 3614*x^9 - 623*x^10 + 20*x^11 + x^12 + x^13)/((x-1)^11*(x+1)^6), {x, 0, 20}], x],3] (* Vaclav Kotesovec, May 11 2014 *)

Formula

a(n) = (n^10 - 10*n^8 + 35*n^6 + 52*n^5 - 210*n^4 + 140*n^3 - 56*n^2 + 48*n + IF(MOD(n, 2) = 1)*(52*n^5 - 145*n^4 + 140*n^3 - 80*n^2 + 48*n - 15))/960.
G.f.: x^3*(-23 - 452*x - 4071*x^2 - 16016*x^3 - 40397*x^4 - 59335*x^5 - 61954*x^6 - 38236*x^7 - 17221*x^8 - 3614*x^9 - 623*x^10 + 20*x^11 + x^12 + x^13)/((x-1)^11*(x+1)^6). - Vaclav Kotesovec, May 11 2014
a(n) = A054772(n, 5), n >=3. - Wolfdieter Lang, Oct 03 2016

A331462 Triangle read by rows: T(n,k) is the number of n X n binary matrices with k=0..n^2 ones forming a polyomino, under action of dihedral group of the square D_4.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 0, 3, 2, 5, 6, 10, 8, 7, 3, 1, 0, 3, 4, 8, 17, 33, 68, 119, 195, 261, 300, 257, 169, 66, 20, 3, 1, 0, 6, 6, 16, 32, 82, 189, 470, 1076, 2422, 5010, 9732, 17145, 27399, 38680, 47560, 49325, 41872, 27864, 14095, 5280, 1470, 302, 48, 6, 1
Offset: 0

Views

Author

Jean-Luc Manguin, Jan 17 2020

Keywords

Comments

By forming a polyomino it is meant that there is at least one 1 and that all the 1's are connected horizontally or vertically.

Examples

			Triangle begins:
  0;
  0, 1;
  0, 1, 1, 1, 1;
  0, 3, 2, 5, 6, 10, 8, 7, 3, 1;
  0, 3, 4, 8, 17, 33, 68, 119, 195, 261, 300, 257, 169, 66, 20, 3, 1;
  ...
		

Crossrefs

Previous Showing 11-20 of 24 results. Next