A080761 Positive numbers of the form y^2 - x^3, x and y >= 1.
1, 3, 8, 9, 12, 15, 17, 18, 19, 22, 24, 28, 30, 35, 36, 37, 38, 40, 41, 44, 48, 54, 55, 56, 57, 63, 64, 65, 68, 71, 73, 79, 80, 89, 92, 94, 97, 98, 99, 100, 101, 105, 106, 107, 108, 112, 113, 117, 119, 120, 121, 128, 129, 131, 132, 136, 138, 141, 142, 143, 145, 148, 151
Offset: 1
Keywords
Examples
8 is in the sequence since 3^2 = 1^3 + 8.
Links
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
- J. Gebel, A. Petho and H. G. Zimmer, On Mordell's equation, Compositio Math. 110 (1998), 335-367.
- Cino Hilliard, Proof that n^3+7 <> k^2 for all integers n,k.
Crossrefs
Programs
-
Mathematica
With[{nn=100},Take[Union[Select[First[#]^2-Last[#]^3&/@Tuples[Range[ 20nn],2],#>0&]],nn]] (* Harvey P. Dale, Jul 10 2012 *)
-
PARI
diop(n,m) = { for(p=1,m, for(x=1,n, y=x*x*x+p; if(issquare(y),print1(p" "); break) ) ) }
Extensions
"Positive" added to definition by N. J. A. Sloane, Oct 06 2007
Comments