cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 44 results. Next

A080761 Positive numbers of the form y^2 - x^3, x and y >= 1.

Original entry on oeis.org

1, 3, 8, 9, 12, 15, 17, 18, 19, 22, 24, 28, 30, 35, 36, 37, 38, 40, 41, 44, 48, 54, 55, 56, 57, 63, 64, 65, 68, 71, 73, 79, 80, 89, 92, 94, 97, 98, 99, 100, 101, 105, 106, 107, 108, 112, 113, 117, 119, 120, 121, 128, 129, 131, 132, 136, 138, 141, 142, 143, 145, 148, 151
Offset: 1

Views

Author

Cino Hilliard, Mar 10 2003

Keywords

Comments

From Artur Jasinski, Oct 03 2007: (Start)
Some numbers have multiple partitions:
8 = 4^2 - 8^3 = 312^2 - 46^3,
9 = 6^2 - 3^3 = 15^2 - 6 ^3 = 253^2 - 40^3. (End)
This is Mordell's equation with the condition that x and y are positive. Sequence A054504 lists the n for which there is no solution to Mordell's equation. Hence, none of those numbers will be in this sequence. The terms of this sequence can be determined by looking at the link to Gebel's data. - T. D. Noe, Mar 23 2011

Examples

			8 is in the sequence since 3^2 = 1^3 + 8.
		

Crossrefs

Complement of A080762.
Cf. sequences for n^3+7, n^3+17, n^3+3, n^3+2, n^3+5.

Programs

  • Mathematica
    With[{nn=100},Take[Union[Select[First[#]^2-Last[#]^3&/@Tuples[Range[ 20nn],2],#>0&]],nn]] (* Harvey P. Dale, Jul 10 2012 *)
  • PARI
    diop(n,m) = { for(p=1,m, for(x=1,n, y=x*x*x+p; if(issquare(y),print1(p" "); break) ) ) }

Extensions

"Positive" added to definition by N. J. A. Sloane, Oct 06 2007

A179147 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 3 integral solutions.

Original entry on oeis.org

343, 1331, 9261, 10648, 12167, 17576, 39304, 42875, 54872, 85184, 97336, 250047, 357911, 405224, 636056, 778688, 857375, 970299, 1331000, 1815848, 2146689, 2515456, 3511808, 3723875, 3944312, 4913000, 5359375, 5545233, 6128487, 6751269, 6859000, 7762392, 8120601, 8365427, 8869743, 9393931
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Extensions

Edited and extended by Ray Chandler, Jul 11 2010
a(30)-a(36) from Max Alekseyev, Jun 01 2023

A179151 Numbers n such that Mordell's equation y^2 = x^3 + n has exactly 7 integral solutions.

Original entry on oeis.org

8, 5832, 125000, 175616, 185193, 941192, 1404928, 1481544, 3241792, 4251528, 11239424, 11852352, 20346417, 21952000, 35937000, 37933056, 38614472, 48228544, 89915392, 128024064, 135005697, 193100552
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Crossrefs

Extensions

Edited and a(3)-a(22) from Ray Chandler, Jul 11 2010

A088017 Numbers not expressible as sum or difference of a nonzero cube and a nonzero square.

Original entry on oeis.org

6, 14, 16, 21, 27, 29, 32, 34, 42, 46, 51, 58, 59, 62, 66, 69, 70, 75, 77, 78, 84, 85, 86, 88, 90, 93, 96, 102, 103, 110, 111, 114, 115, 123, 125, 130, 133, 137, 140, 144, 149, 157, 158, 160, 162, 165, 166, 173, 176, 178, 179, 181, 182, 183, 187, 194, 201, 202, 203
Offset: 1

Views

Author

Hugo Pfoertner, Sep 18 2003

Keywords

Comments

Numbers n such that neither variant of Mordell's equation y^2=x^3+n (A054504) or y^2=x^3-n (A081121) has an integral solution with nonzero x and y. - Jack Brennen, Aug 28 2003

Examples

			16 is in the sequence because the only integral solution to Mordell's equation y^2 = x^3 +- 16 is (y=4,x=0). 49 is not in the sequence because it can also be expressed as 65^3-524^2.
		

Crossrefs

A134109 Number of integral solutions with nonnegative y to Mordell's equation y^2 = x^3 - n.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 1, 1, 0, 3, 2, 1, 0, 0, 0, 2, 1, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 3
Offset: 1

Views

Author

Klaus Brockhaus, Oct 08 2007, Oct 14 2007

Keywords

Comments

a(n) = A081120(n)/2 if A081120(n) is even, (A081120(n)+1)/2 if A081120(n) is odd (i.e. if n is a cubic number).
Comment from T. D. Noe, Oct 12 2007: In sequences A134108 and A134109 (this entry) dealing with the equation y^2 = x^3 + n, one could note that these are Mordell equations. Here are some related sequences: A054504, A081119, A081120, A081121. The link "Integer points on Mordell curves" has data on 20000 values of n. A134108 and A134109 count only solutions with y >= 0 and can be derived from A081119 and A081120.

Examples

			y^2 = x^3 - 4 has solutions (y, x) = (2, 2) and (11, 5), hence a(4) = 2.
y^2 = x^3 - 5 has no solutions, hence a(5) = 0.
y^2 = x^3 - 8 has solution (y, x) = (0, 2), hence a(8) = 1.
y^2 = x^3 - 207 has 7 solutions (see A134106, A134107), hence a(207) = 7.
		

Crossrefs

Programs

  • Magma
    [ #{ Abs(p[2]) : p in IntegralPoints(EllipticCurve([0, -n])) }: n in [1..104] ];
  • Mathematica
    A081120 = Cases[Import["https://oeis.org/A081120/b081120.txt", "Table"], {, }][[All, 2]];
    a[n_] := With[{an = A081120[[n]]}, If[EvenQ[an], an/2, (an+1)/2]];
    a /@ Range[10000] (* Jean-François Alcover, Nov 28 2019 *)

A110223 Numbers not the absolute difference between a cube and a square.

Original entry on oeis.org

6, 14, 21, 29, 32, 34, 42, 46, 51, 58, 59, 62, 66, 69, 70, 75, 77, 78, 84, 85, 86, 88, 90, 93, 96, 102, 103, 110, 111, 114, 115, 123, 130, 133, 137, 140, 149, 157, 158, 160, 162, 165, 166, 173, 176, 178, 179, 181, 182, 183, 187, 194, 201, 202, 203, 205, 209, 210, 211
Offset: 1

Views

Author

Robert G. Wilson v, Jul 16 2005

Keywords

Comments

See A074981 for references.

Crossrefs

Cf. A074981. Intersection of A081121 and A054504.

Programs

  • Mathematica
    Complement[ Range[212], Union[ Flatten[ Table[ Select[ Table[ Abs[n^3 - m^2], {m, 0, 10000}], # < 10^3 &], {n, -5000, 5000}]]]]

A285984 Numbers k such that 27*T(k)+1 is a square, where T(m) is the m-th triangular number A000217(m).

Original entry on oeis.org

0, 110, 374, 107184, 363264, 103968854, 352366190, 100849681680, 341794841520, 97824087261230, 331540643908694, 94889263793711904, 321594082796592144, 92042488055813286134, 311945928772050471470, 89281118524875093838560, 302587229314806160734240, 86602592926640785210117550
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

Numbers a(n) that make sqrt(27*T(a(n))+1) an integer.
This sequence a(n) gives also the indices of the triangular numbers T(a(n)) such that the 3rd degree Diophantine Bachet-Mordell equation y^2 = x^3+K holds with x = 3*T(a(n)) = A286035(n), y = T(a(n))* sqrt(27*T(a(n))+1) = A286036(n) and K = T(a(n))^2 = A286037(n).

Examples

			k = 110 is a term because 27*(T(110) + 1) = 27 * (110*111/2 + 1) is a square. - _David A. Corneth_, May 02 2017
For n = 2, a(2) = 264*sqrt(27*(a(0)*(a(0)+1)/2)+1)+ a(-2) = 264*sqrt(27*(0*(0+1)/2)+1) + 110 = 374.
For n = 6, a(6) = 264*sqrt(27*(a(4)*(a(4)+1)/2)+1)+ a(2) = 264*sqrt(27*(363264*(363264+1)/2)+1) + 374 = 352366190.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: am2:=110: am1:=0: a0:=0: ap1:=110: print ('0,0','1,110'); for n from 2 to 1000 do a:= 264*sqrt(27* (a0^2+a0)/2+1)+am2; print(n,a); am2:=am1; am1:=a0; a0:=ap1; ap1:=a; end do:
  • Mathematica
    nxt[{a_,b_}]:={b,485*a+242+66*Sqrt[54a^2+54*a+4]}; NestList[nxt,{0,110},20][[All,1]] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    is(n) = issquare(27*binomial(n+1, 2)+1) \\ David A. Corneth, May 02 2017

Formula

a(n) = 264*sqrt(27*T(a(n-2))+1)+ a(n-4) = 264*sqrt(27*(a(n-2)*(a(n-2)+1)/2)+1)+ a(n-4), with a(-2)=110, a(-1)=0, a(0)=0, a(1)=110.
Empirical g.f.: 22*x*(5 + 12*x + 5*x^2) / ((1 - x)*(1 - 970*x^2 + x^4)). - Colin Barker, May 01 2017, verified by Robert Israel, May 03 2017
a(n) = 485*a(n-2)+242+66*sqrt(54*a(n-2)^2+54*a(n-2)+4). - Robert Israel, May 03 2017

A286035 a(n) = 3*T(A285984(n)), where T(m) is the m-th triangular number A000217(m).

Original entry on oeis.org

0, 18315, 210375, 17232775560, 197941645440, 16214284059063255, 186242898311223435, 15255987442587265956120, 175235570535035566127880, 14354328072739259079522561195, 164878797845087651200279041495, 13505958574968967401962031517525680, 155134131134672045268505114018663320
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

This sequence a(n) gives the solutions x of the 3rd degree Diophantine Bachet-Mordell equation y^2=x^3+K, with y = T(b(n))*sqrt(27*T(b(n))+1) = A286036(n) and K = (T(b(n)))^2 = A286037(n), the square of the triangular number of b(n)= A285984(n).

Examples

			For n = 2, b(n) = 374, a(n)= 210375.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = 3*T(b(n)) = 3*A000217(A285984(n)) = 3*A000217(107184) = 3*5744258520=17232775560.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,18315'); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; a:=3*b*(b+1)/2;print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

Formula

Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = 3*T(b(n)) (this sequence), one has :
a(n) = 3*[264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4) ]*[ 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2.
Empirical g.f.: 495*x*(37 + 388*x + 37*x^2) / ((1 - x)*(1 - 970*x + x^2)*(1 + 970*x + x^2)). - Colin Barker, May 01 2017

A286036 a(n) is the solution y to the Bachet Mordell equation y^2=x^3+K, with x = 3*T(b(n)) and K = (T(b(n)))^2, where T(b(n)) is the triangular number of b(n)= A285984(n).

Original entry on oeis.org

0, 2478630, 96492000, 2262209634604920, 88065491686677120, 2064651070850763887750940, 80374740223699340246041830, 1884345278651963087653858708518360, 73355621393690297028946986338029560, 1719785575058362227821108881720941727234290, 66949481579385248741161156467886515267346140
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

a(n) is the producs of the triangular number T(b(n)) and the square root of 27 times this triangular number plus one, sqrt(27*T(b(n))+1), where b(n) is the sequence A285984(n) of numbers n such that (27*T(n)+1) is a square.

Examples

			For n = 2, b(n) = 374, a(n)= 96492000.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = T(b(n))* sqrt(27*T(b(n))+1) = A000217(A285984(n))* sqrt(27*A000217(A285984(n))+1) = A000217(107184)* sqrt(27*A000217(107184)+1) =5744258520* sqrt(27*5744258520 +1) = 2262209634604920.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,2478630’); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; T:=b*(b+1)/2; a:= T*sqrt(27*T+1); print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

Formula

Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = T(b(n))*sqrt(27*T(b(n))+1) (this sequence), one has :
a(n) = ([264*sqrt(27*T(b(n-2))+1)+ b(n-4)]*[ 264*sqrt(27*T(b(n-2))+1)+ b(n-4)+1]/2) *sqrt(27*([264*sqrt(27*T(b(n-2))+1)+ b(n-4)]*[ 264*sqrt(27*T(b(n-2))+1)+ b(n-4)+1]/2)+1).
Empirical g.f.: 330*x*(1 + x)*(7511 + 284889*x + 108094375*x^2 + 284889*x^3 + 7511*x^4) / ((1 - 912670090*x^2 + x^4)*(1 - 970*x^2 + x^4)). - Colin Barker, May 01 2017

A286037 a(n) = T(A285984(n))^2, where T(m) is the m-th triangular number A000217(m).

Original entry on oeis.org

0, 37271025, 4917515625, 32996505944592590400, 4353432777721630310400, 29211445283110309395256454577225, 3854046352373857001854365165911025, 25860572538708927496411840821477504196161600, 3411945020082158343071838489442339152945921600, 22894081602203374655543296113789919615194083223613314225
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

a(n) =(T(b(n)))^2, parameters K=a(n) of the Bachet Mordell equation y^2=x^3+K, with x= 3*T(b(n)) and y= T(b(n))*sqrt(27*T(b(n))+1), where T(b(n)) is the triangular number of b(n)= A285984(n).

Examples

			For n = 2, b(n) = 374, a(n)= 4917515625.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = (T(b(n)))^2 = (A000217(A285984(n)))^2 = (A000217(107184))^2 = (5744258520)^2=32996505944592590400.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,4917515625’); for n from 2 to 1000 do b:= 264*sqrt(27*(b0^2+b0)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

Formula

Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = (T(b(n)))^2 (this sequence), one has :
a(n) = ([264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4) ]*[ 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)^2.
Empirical g.f.: 27225*x*(1369 + 179256*x + 30879367019*x^2 + 168661970400*x^3 + 30879367019*x^4 + 179256*x^5 + 1369*x^6) / ((1 - x)*(1 - 940898*x + x^2)*(1 - 970*x + x^2)*(1 + 970*x + x^2)*(1 + 940898*x + x^2)). - Colin Barker, May 01 2017
Previous Showing 11-20 of 44 results. Next