cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A054641 GCD of divisor-sum of primorials and primorials itself: a(n) = gcd(A002110(n), A000203(A002110(n))).

Original entry on oeis.org

1, 6, 6, 6, 6, 42, 42, 210, 210, 210, 210, 3990, 3990, 43890, 43890, 43890, 43890, 1360590, 23130030, 23130030, 855811110, 855811110, 855811110, 855811110, 855811110, 855811110, 11125544430, 11125544430, 11125544430, 11125544430
Offset: 1

Views

Author

Labos Elemer, May 15 2000

Keywords

Comments

Values are repeated for several arguments: observed from 1 to 8 times below n=100. Sites of jump seems not so regular.
From a sufficiently high value of n, A002110(n) divides the terms. E.g., from n=27, A002110(8) divides the values of this sequences.

Crossrefs

Programs

A078559 Numerator of Product_{i=1..n} (p_i + 1)/(p_i - 1) where p_i is the i-th prime.

Original entry on oeis.org

3, 6, 9, 12, 72, 84, 189, 21, 252, 270, 288, 304, 1596, 152, 3648, 49248, 295488, 1526688, 17302464, 622888704, 640191168, 1707176448, 10243058688, 23046882048, 23527025424, 599939148312, 47054050848, 2540918745792
Offset: 1

Views

Author

Labos Elemer, Dec 06 2002

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, B48.

Crossrefs

Programs

  • Maple
    Q:= 1: p:= 1:
    for n from 1 to 100 do
      p:= nextprime(p);
      Q:= Q * (p+1)/(p-1);
      A[n]:= numer(Q);
    od:
    seq(A[i],i=1..100); # Robert Israel, May 11 2018
  • Mathematica
    Numerator[Table[Product[(Prime[i] + 1)/(Prime[i] - 1), {i, n}], {n, 30}]] (* Alonso del Arte, Aug 23 2011 *)
  • PARI
    a(n) = numerator(prod(i=1, n, (prime(i)+1)/(prime(i)-1))); \\ Michel Marcus, May 11 2018

Formula

a(n) = A054640(n)/A078558(n).
a(n)/A078560(n) ~ C*log^2(prime(n)), where C = exp(2*gamma)/zeta(2) = 6(e^gamma/pi)^2 = A091724 / A013661. Physics note: (a(n)/A078560(n) - 1)/(a(n)/A078560(n) + 1) = tanh(Sum_{k=1..n} arctanh(1/prime(k))) is the relativistic sum of n velocities c/2, c/3, ..., c/prime(n), in units where the speed of light c = 1. - Thomas Ordowski, Nov 06 2024

Extensions

Improved definition from Franklin T. Adams-Watters, Dec 02 2005

A078560 Denominator of Product_{i=1..n} (p_i+1)/(p_i-1). Numerators are in A078559.

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 10, 1, 11, 11, 11, 11, 55, 5, 115, 1495, 8671, 43355, 476905, 16691675, 16691675, 43398355, 254190365, 559218803, 559218803, 13980470075, 1075420775, 56997301075, 1036314565, 1036314565, 1036314565, 6123676975
Offset: 1

Views

Author

Labos Elemer, Dec 06 2002

Keywords

Comments

According to Koninck (2009), a(8) is the largest value of this sequence known to be 1 (meaning that the product is an integer). [Alonso del Arte, Aug 23 2011]

References

  • R. K. Guy, Unsolved Problems in Number Theory, B48.
  • J.-M. De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, p. 6.

Crossrefs

Programs

  • Maple
    Q:= 1: p:= 1:
    for n from 1 to 100 do
      p:= nextprime(p);
      Q:= Q * (p+1)/(p-1);
      A[n]:= denom(Q);
    od: seq(A[i], i=1..100); #
  • Mathematica
    Denominator[Table[Product[(Prime[i] + 1)/(Prime[i] - 1), {i, n}], {n, 30}]] (* Alonso del Arte, Aug 23 2011 *)
  • PARI
    a(n) = denominator(prod(i=1, n, (prime(i)+1)/(prime(i)-1))); \\ Michel Marcus, May 11 2018

Formula

a(n) = A005867(n)/A078558(n).

Extensions

Improved definition from Franklin T. Adams-Watters, Dec 02 2005

A309804 a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+4} (prime(i)*x-1).

Original entry on oeis.org

1, 28, 652, 16186, 414849, 11970750, 411154568, 14802996860, 617651235401, 28112591190218, 1330940558814492, 68134228016658366, 3888046744502816953, 244783216404832868510, 15878401438954693327808, 1123935467586630569656024, 83970858613393528568199649
Offset: 0

Views

Author

Alexey V. Bazhin, Aug 17 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+4), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2019
  • Mathematica
    a[n_] := CoefficientList[Series[Product[Prime[i]*x - 1, {i, 1, n+4}], {x, 0, 25}], x] [[n+1]]; Array[a, 17, 0] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    a(n) = polcoef(prod(i=1, n+4, prime(i)*x-1), n); \\ Michel Marcus, Aug 25 2019

Formula

a(n) = [x^n] Product_{i=1..n+4} (prime(i)*x-1).
a(n) = abs(A070918(n+4,4)).
a(n) = abs(A238146(n+4,n)) for n>0.
a(n) = A260613(n+4,n).

A382489 The number of unitary 5-smooth divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8, 1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2025

Keywords

Comments

Period 30: repeat [1, 2, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 2, 4, 2, 1, 4, 1, 4, 2, 2, 1, 4, 2, 2, 2, 2, 1, 8].
In general, the sequence of the number of unitary prime(k)-smooth divisors of n, for k >= 1, is periodic with period A002110(k).
Decimal expansion of 135804580460138015713571358020/111111111111111111111111111111.
Continued fraction expansion of 808690/(525316 + sqrt(382161348866)) (with offset 0).

Crossrefs

The number of unitary prime(k)-smooth divisors of n: A134451 (k = 1), A382488 (k = 2), this sequence (k = 3).

Programs

  • Mathematica
    a[n_] := Product[If[Divisible[n, p], 2, 1], {p, {2, 3, 5}}]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> !((n % 30) % x) + 1, [2, 3, 5]))

Formula

Multiplicative with a(p^e) = 2 if p <= 5, and 1 otherwise.
a(n) = A034444(A355582(n)).
a(n) = A034444(n) if and only if n is 5-smooth (A051037).
a(n) = A355583(n) if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 12/5.
In general, the asymptotic mean of the number of unitary prime(k)-smooth divisors of n is A054640(k)/A002110(k) = A236435(k)/A236436(k).
Dirichlet g.f.: (1 + 1/2^s) * (1 + 1/3^s) * (1 + 1/5^s) * zeta(s).
In general, Dirichlet g.f. of the number of unitary prime(k)-smooth divisors of n is zeta(s) * Product_{p prime <= prime(k)} (1 + 1/p^s).

A054642 Distinct values of GCD of divisor sum of primorials and primorial itself: gcd(A002110(n), A000203(A002110(n))).

Original entry on oeis.org

1, 6, 42, 210, 3990, 43890, 1360590, 23130030, 855811110, 11125544430, 255887521890, 20215114229310, 828819683401710, 24035770818649590, 2331469769409010230, 123567897778677542190, 5313419604483134314170
Offset: 1

Views

Author

Labos Elemer, May 15 2000

Keywords

Comments

Below n=100, 30 values arise and if large enough are divisible by large primorials. E.g., for n=1..30, a(n) mod 510510 = {1, 6, 42, 210, 3990, 43890, 339570, 157080, 196350, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

Crossrefs

A087233 a(n) = floor(sigma(A002110(n))/A002110(n)); integer quotient of divisor-sum of primorial numbers and primorials.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Labos Elemer, Sep 01 2003

Keywords

Crossrefs

Programs

  • Mathematica
    q[x_] := Apply[Times, Table[Prime[w], {w, 1, x}]]; q[0]=1; Table[Floor[DivisorSigma[1, a=q[u]]/q[u]//N], {u, 1, 300}]
    seq[nmax_] := Floor[FoldList[Times, 1, 1 + 1/Prime[Range[nmax]]]]; seq[100] (* Amiram Eldar, Aug 10 2024 *)
  • PARI
    a(n) = floor(vecprod(apply(x -> 1 + 1/x, primes(n)))); \\ Amiram Eldar, Aug 10 2024

Formula

From Amiram Eldar, Aug 10 2024: (Start)
a(n) = A108775(A002110(n)).
a(n) = floor(A054640(n)/A002110(n)).
a(n) = floor(Product_{k=1..n} (1 + 1/prime(k))). (End)

Extensions

Offset changed to 0 and a(0) prepended by Amiram Eldar, Aug 10 2024

A260231 a(n) = Product_{k=1..n} (1 + k^k).

Original entry on oeis.org

2, 10, 280, 71960, 224946960, 10495350312720, 8643382777938679680, 145011908479540041684850560, 56180584638978557924165229531974400, 561805846445966163880630853243909229531974400, 160289764609087349005207761687490741791453382934816332800
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 20 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[1+k^k,{k,1,n}],{n,1,12}]
    FoldList[Times,Table[1+k^k,{k,12}]] (* Harvey P. Dale, Jul 19 2025 *)

Formula

a(n) ~ c * A002109(n), where c = Product_{k>=1} (1 + 1/k^k) = 2.60361190459951423330221282635022049352582879064202503882732200701325334...

A343119 Number of compositions (ordered partitions) of the n-th primorial into distinct parts.

Original entry on oeis.org

1, 1, 11, 41867, 517934206090276988507, 42635439758725572299058305546953458030363703549127905691758491973278624456679699932948789006991639715987
Offset: 0

Views

Author

Alois P. Heinz, Apr 09 2021

Keywords

Comments

All terms are odd.

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*ithprime(n)) end:
    g:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
         `if`(k=0, `if`(n=0, 1, 0), g(n-k, k)+k*g(n-k, k-1)))
        end:
    a:= n-> add(g(b(n), k), k=0..floor((sqrt(8*b(n)+1)-1)/2)):
    seq(a(n), n=0..5);
  • Mathematica
    $RecursionLimit = 5000;
    b[n_] := If[n == 0, 1, b[n - 1]*Prime[n]];
    g[n_, k_] := g[n, k] = If[k < 0 || n < 0, 0,
         If[k == 0, If[n == 0, 1, 0], g[n - k, k] + k*g[n - k, k - 1]]];
    a[n_] := Sum[g[b[n], k], {k, 0, Floor[(Sqrt[8*b[n] + 1] - 1)/2]}];
    Table[a[n], {n, 0, 5}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)

Formula

a(n) = A032020(A002110(n)).
Previous Showing 21-29 of 29 results.