cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A217499 Primes of the form 2*n^2 + 70*n + 33.

Original entry on oeis.org

181, 433, 1801, 4933, 5581, 7741, 13033, 18433, 24733, 41761, 47161, 49033, 94033, 96661, 104761, 140401, 156781, 174061, 188533, 207433, 227233, 252181, 265141, 370081, 385741, 412561, 423541, 440281, 451621, 510481, 535033, 572941, 598933, 659521, 666433
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1159 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Subsequence of A002144.

Programs

  • Magma
    [a: n in [1..600] | IsPrime(a) where a is 2*n^2+70*n+33];
  • Mathematica
    Select[Table[2 n^2 + 70 n + 33, {n, 600}], PrimeQ]

A135977 Mersenne composites (A065341) with exactly 3 prime factors.

Original entry on oeis.org

536870911, 8796093022207, 140737488355327, 9007199254740991, 2361183241434822606847, 9444732965739290427391, 604462909807314587353087
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k

Formula

a(n) = 2^A344515(n) - 1. - Amiram Eldar, May 23 2021

A217495 Primes of the form 2*n^2 + 46*n + 21.

Original entry on oeis.org

769, 1381, 1741, 2137, 3037, 3541, 4657, 7321, 9697, 22441, 26437, 30757, 35401, 37021, 38677, 47497, 49369, 55201, 61357, 72337, 79357, 81769, 96997, 99661, 105097, 134437, 188869, 207769, 211657, 227569, 256801, 306301, 330241, 469237, 480937, 492781, 510817
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n)+487 is a square. - Vincenzo Librandi, Mar 04 2013

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), this sequence (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002144.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+46*n+21];
  • Mathematica
    Select[Table[2 n^2 + 46 n + 21, {n, 500}], PrimeQ]

A217500 Primes of the form 2*n^2 + 74*n + 35.

Original entry on oeis.org

191, 863, 1091, 1871, 2963, 3491, 3863, 4451, 9011, 15731, 21191, 21611, 29363, 30851, 35531, 42863, 44651, 45863, 47711, 50231, 52163, 60251, 65963, 68171, 71171, 75011, 100151, 101051, 109331, 112163, 119891, 144611, 147863, 164663, 179951, 204791, 254963
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1299 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), this sequence (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..600] | IsPrime(a) where a is 2*n^2 + 74*n + 35];
  • Mathematica
    Select[Table[2n^2 + 74n + 35, {n, 600}], PrimeQ]

A217501 Primes of the form 2*n^2 + 78*n + 37.

Original entry on oeis.org

37, 577, 1657, 2089, 2557, 3061, 4177, 4789, 5437, 6121, 6841, 8389, 12889, 17137, 18289, 19477, 21961, 27361, 36541, 38197, 41617, 45181, 47017, 48889, 54721, 56737, 58789, 74161, 78877, 83737, 88741, 91297, 93889, 96517, 99181, 113041, 121789, 124777
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1447 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), this sequence (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002144.

Programs

  • Magma
    [a: n in [0..600] | IsPrime(a) where a is 2*n^2+78*n+37];
  • Mathematica
    Select[Table[2 n^2 + 78 n + 37, {n, 0, 600}], PrimeQ]

A217620 Primes of the form 2*n^2 + 82*n + 39.

Original entry on oeis.org

211, 499, 823, 1579, 2011, 4099, 6043, 6763, 8311, 10903, 11839, 18211, 27283, 28723, 34843, 38119, 41539, 56659, 58711, 76423, 86143, 88663, 93811, 99103, 110119, 121711, 124699, 130783, 149899, 163363, 173839, 181003, 188311, 222979, 227011, 231079, 247711
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1603 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), this sequence (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002145.

Programs

  • Magma
    [a: n in [1..600] | IsPrime(a) where a is 2*n^2+82*n+39];
  • Mathematica
    Select[Table[2 n^2 + 82 n + 39, {n, 600}], PrimeQ]

A217621 Primes of the form 2*n^2 + 90*n + 43.

Original entry on oeis.org

43, 331, 2311, 3931, 7351, 8971, 18043, 19231, 23011, 31543, 33091, 37951, 46771, 50551, 58543, 60631, 81043, 133711, 149731, 173671, 188143, 226843, 251791, 296251, 310291, 319831, 364543, 385351, 395971, 412171, 417643, 439891, 474343, 540871, 625111, 631843
Offset: 1

Views

Author

Vincenzo Librandi, Oct 09 2012

Keywords

Comments

Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1939 is a square. - Vincenzo Librandi, Apr 09 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), this sequence (k=21).
Subsequence of A002145.

Programs

  • Magma
    [a: n in [0..700] | IsPrime(a) where a is 2*n^2+90*n+43];
  • Mathematica
    Select[Table[2 n^2 + 90 n + 43, {n, 0, 700}], PrimeQ]

A135976 Mersenne composites (A065341) with exactly 2 prime factors.

Original entry on oeis.org

2047, 8388607, 137438953471, 2199023255551, 576460752303423487, 147573952589676412927, 9671406556917033397649407, 158456325028528675187087900671, 2535301200456458802993406410751
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A135976 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (nops(numtheory[factorset](i)) = 2) then
       RETURN (i)
    fi: end: [ seq(A135976(n), n=1..26) ]; # Jani Melik, Feb 09 2011
  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k
  • PARI
    forprime(p=1, 1e2, if(bigomega(2^p-1)==2, print1(2^p-1, ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = 2^A135978(n) - 1. - Amiram Eldar, May 23 2021

A135978 Primes p such that 2^p-1 has exactly 2 prime factors.

Original entry on oeis.org

11, 23, 37, 41, 59, 67, 83, 97, 101, 103, 109, 131, 137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347, 373, 379, 421, 457, 487, 523, 727, 809, 881, 971, 983, 997, 1061, 1063
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Comments

a(40)>=1277. - Amiram Eldar, Sep 29 2018

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d == 2, AppendTo[k, Prime[n]]]], {n, 1, 40}]; k

Extensions

a(17)-a(37) from Arkadiusz Wesolowski, Jan 26 2012
a(38)-a(39) from Amiram Eldar, Sep 29 2018

A243888 Primes of the form 2*n^2+26*n+11.

Original entry on oeis.org

71, 107, 191, 239, 347, 1031, 1439, 1667, 1787, 2039, 2447, 2591, 3371, 3539, 5231, 5651, 5867, 6311, 7247, 9311, 9587, 10151, 11027, 11939, 12251, 14207, 14891, 19727, 20939, 21767, 23039, 27539, 30431, 34511, 36107, 39971, 41687, 46439, 47051, 56039, 56711
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A068231.
Conjecture: except 107, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 147 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. A068231.
Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A221902 (k=1), A154577 (k=2), A154592 (k=3), A154601 (k=4), this sequence (k=5), A243889 (k=6), A217494 (k=7), A243890 (k=8), A221903 (k=9), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A243891 (k=14), A243957 (k=15), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A243958 (k=20), A217621 (k=21).

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 2*n^2+26*n+11];
  • Mathematica
    Select[Table[2 n^2 + 26 n + 11, {n, 800}], PrimeQ]
Previous Showing 11-20 of 41 results. Next