cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A243890 Primes of the form 2*n^2+38*n+17.

Original entry on oeis.org

101, 149, 257, 317, 449, 521, 677, 761, 941, 1697, 1949, 2081, 2357, 2801, 2957, 3449, 3797, 4349, 4937, 6221, 6449, 6917, 7649, 7901, 8681, 9221, 9497, 10061, 10937, 12161, 13121, 13781, 15149, 16217, 17321, 18077, 18461, 20441, 20849, 25601, 26981, 27449
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A040117.
Conjecture: except 521, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 327 is a square. - Vincenzo Librandi, Jun 29 2016

Crossrefs

Cf. A040117.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 2*n^2+38*n+17];
  • Mathematica
    Select[Table[2 n^2 + 38 n + 17, {n, 800}], PrimeQ]

A243891 Primes of the form 2*n^2 + 62*n + 29.

Original entry on oeis.org

233, 389, 653, 953, 1061, 1289, 1409, 2069, 2213, 4253, 4649, 5273, 6869, 8933, 9209, 10061, 10949, 13829, 15569, 16661, 17033, 17789, 24413, 26693, 28109, 32573, 35729, 36269, 37361, 42473, 44249, 46061, 48533, 51713, 52361, 55661, 56333, 57689, 59753
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A040117.
Conjecture: except 4253, 2^a(n) - 1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 903 is a square. - Vincenzo Librandi, Jun 29 2016

Crossrefs

Cf. A040117.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..200] | IsPrime(a) where a is 2*n^2+62*n+29];
  • Mathematica
    Select[Table[2 n^2 + 62 n + 29, {n, 200}], PrimeQ]

A243957 Primes of the form 2*n^2+66*n+31.

Original entry on oeis.org

499, 787, 1471, 1867, 2767, 3271, 4999, 5647, 8599, 13099, 14107, 16231, 19687, 22171, 24799, 33547, 40099, 43591, 52951, 63211, 65371, 67567, 79087, 88951, 94099, 99391, 104827, 107599, 116131, 119047, 124987, 131071, 153499, 160231, 167107, 177691, 192307
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Primes of the form 36*A056115(k)+31.
Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.

Crossrefs

Cf. A056115, A142110 (supersequence).
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2+66*n+31];
  • Mathematica
    Select[Table[2 n^2 + 66 n + 31, {n, 800}], PrimeQ]

A243958 Primes of the form 2*n^2+86*n+41.

Original entry on oeis.org

317, 521, 857, 977, 1229, 1361, 1637, 2081, 2237, 2729, 3257, 3821, 4217, 4421, 5501, 6197, 8501, 9341, 9629, 12401, 13397, 14081, 15137, 15497, 16229, 18521, 18917, 20129, 21377, 22229, 23537, 23981, 26261, 26729, 29129, 31121, 32141, 35837, 36929, 39161
Offset: 1

Views

Author

Vincenzo Librandi, Jun 16 2014

Keywords

Comments

Subsequence of A040117.
Conjecture: except 521, 2^a(n)-1 is not prime; in other words, these primes are included in A054723.

Crossrefs

Cf. A040117.
Cf. similar sequences listed in A243888.

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 2*n^2+86*n+41];
  • Mathematica
    Select[Table[2 n^2 + 86 n + 41, {n, 800}], PrimeQ]

A275938 Numbers m such that d(m) is prime while sigma(m) is not prime (where d(m) = A000005(m) and sigma(m) = A000203(m)).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1

Views

Author

Altug Alkan, Aug 12 2016

Keywords

Comments

From Robert Israel, Aug 12 2016: (Start)
d(m) is prime iff m = p^k where p is prime and k+1 is prime.
For such m, sigma(m) = 1 + p + ... + p^k = (p*m-1)/(p-1).
The sequence contains 2^(q-1) for q in A054723,
3^(q-1) for q prime but not in A028491,
5^(q-1) for q prime but not in A004061,
7^(q-1) for q prime but not in A004063, etc.
In particular, it contains all odd primes. (End)

Examples

			49 is a term because A000005(49) = 3 is prime while sigma(49) = 57 is not.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= select(isprime, {2,seq(p,p=3..N,2)}):
    fp:= proc(p) local q,res;
      q:= 2;
      res:= NULL;
      while p^(q-1) <= N do
         if not isprime((p^q-1)/(p-1)) then res:= res, p^(q-1) fi;
         q:= nextprime(q);
      od;
      res;
    end proc:
    sort(convert(map(fp, P),list)); # Robert Israel, Aug 12 2016
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")));

Formula

UNION of A000040 and A286095 (except for the term 2). - Bill McEachen, Jul 16 2024

A344515 Primes p such that 2^p-1 has exactly 3 distinct prime factors.

Original entry on oeis.org

29, 43, 47, 53, 71, 73, 79, 179, 193, 211, 257, 277, 283, 311, 331, 349, 353, 389, 409, 443, 467, 499, 563, 577, 599, 613, 631, 643, 647, 683, 709, 751, 769, 829, 919, 941, 1039, 1103, 1117, 1123, 1171, 1193
Offset: 1

Views

Author

Amiram Eldar, May 21 2021

Keywords

Comments

The corresponding Mersenne numbers are in A135977.
a(43) >= 1237.
The following primes are also terms of this sequence: 1301, 1303, 1327, 1459, 1531, 1559, 1907, 2311, 2383, 2887, 3041, 3547, 3833, 4127, 4507, 4871, 6883, 7673, 8233.

Examples

			29 is a term since 2^29-1 = 536870911 = 233 * 1103 * 2089 has exactly 3 distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], PrimeQ[#] && PrimeNu[2^# - 1] == 3 &]

Formula

2^a(n) - 1 = A135977(n).

A379590 a(n) is the number of prime divisors d of n such that 2^d - 1 is prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 3, 1, 1, 1, 2, 2, 2, 0, 2, 2, 2, 0, 3, 0, 1, 2, 1, 0, 2, 1, 2, 2, 2, 0, 2, 1, 2, 2, 1, 0, 3, 1, 2, 2, 1, 2, 2, 0, 2, 1, 3, 0, 2, 0, 1, 2, 2, 1, 3, 0, 2, 1, 1, 0, 3, 2, 1, 1, 1, 1, 3, 2, 1, 2, 1, 2, 2, 0, 2, 1, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 26 2024

Keywords

Comments

Number of divisors of n that belong to A000043.

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | IsPrime(2^d-1)]: n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, PrimeQ[2^# - 1] &]; Array[a, 100] (* Amiram Eldar, Dec 27 2024 *)
  • PARI
    a(n) = sumdiv(n, d, isprime(d) && ispseudoprime(2^d-1)); \\ Michel Marcus, Dec 28 2024

A135386 Mersenne composites A065341 with 4 or more prime factors.

Original entry on oeis.org

10384593717069655257060992658440191, 2854495385411919762116571938898990272765493247, 182687704666362864775460604089535377456991567871
Offset: 1

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Crossrefs

Programs

  • Maple
    A135386 := proc(n) local i;
    i := 2^(ithprime(n))-1:
    if (nops(numtheory[factorset](i)) > 3) then
       RETURN (i)
    fi: end: seq(A135386(n), n=1..37); # Jani Melik, Feb 09 2011
  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^Prime[n] - 1], c = FactorInteger[2^Prime[n] - 1]; d = Length[c]; If[d >3, AppendTo[k, 2^Prime[n] - 1]]], {n, 1, 40}]; k

A186884 Numbers k such that 2^(k-1) == 1 + b*k (mod k^2), where b divides k - 2^p for some integer p >= 0 and 2^p <= b.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 71, 127, 173, 199, 233, 251, 257, 379, 491, 613, 881, 2047, 2633, 2659, 3373, 3457, 5501, 5683, 8191, 11497, 13249, 15823, 16879, 18839, 22669, 24763, 25037, 26893, 30139, 45337, 48473, 56671, 58921, 65537, 70687, 74531, 74597, 77023, 79669, 87211, 92237, 102407, 131071, 133493, 181421, 184511, 237379, 250583, 254491, 281381
Offset: 1

Views

Author

Alzhekeyev Ascar M, Feb 28 2011

Keywords

Comments

This sequence contains A186645 as a subsequence (corresponding to p=0).
All composites in this sequence are 2-pseudoprimes, A001567. This sequence contains all terms of A054723. Another composite term is 4294967297 = 2^32 + 1, which does not belong to A054723. In other words, all known composite terms have the form (2^x + 1) or (2^x - 1). Are there composites not of this form?
This sequence contains all the primes of the forms (2^x + 1) and (2^x - 1), i.e., subsequences A092506 and A000668.

Extensions

Edited by Max Alekseyev, Mar 14 2011
a(25) and a(26) interchanged by Georg Fischer, Jul 08 2022

A241973 Prime exponents of composite Mersenne numbers in the order of the magnitude of the smallest prime factor.

Original entry on oeis.org

11, 23, 83, 37, 29, 131, 179, 191, 43, 73, 239, 251, 359, 419, 431, 443, 491, 659, 683, 233, 719, 743, 911, 1019, 1031, 1103, 47, 397, 1223, 79, 461, 1439, 1451, 1499, 1511, 1559, 1583, 557, 113, 577, 601, 1811, 1931, 2003, 2039, 2063, 761, 2339, 2351, 2399
Offset: 1

Views

Author

J. Lowell, May 03 2014

Keywords

Comments

Terms are the same as A054723, but in a different order.
If p is a prime and 2^p-1 is composite, each prime factor of 2^p-1 will be of the form kp+1 for some integer k. Thus, the smallest prime factor of 2^p-1 cannot be smaller than p.
The corresponding smallest prime factors are: 23, 47, 167, 223, 233, 263, 359, 383, 431, 439, 479, 503, 719, 839, 863, 887, 983, ....

Examples

			83 comes before 37 because 167 (the smallest prime factor of 2^83-1) < 223 (the smallest prime factor of 2^37-1).
		

Crossrefs

Programs

  • PARI
    lista() = {vi = readvec("b054723.txt"); vm = vector(#vi, i, 2^vi[i]-1); p = 2; nbf = 0; while ( nbf != #vm, i = 1; while (!(i>#vm) && (!vm[i] || (vm[i] % p)), i++); if (i <= #vm, print1(vi[i], ", "); vm[i] = 0; nbf ++;); p = nextprime(p+1););} \\ Michel Marcus, May 14 2014

Extensions

More terms from Michel Marcus, May 14 2014
Previous Showing 31-40 of 41 results. Next