cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A381779 G.f. A(x) satisfies A(x) = (1 + x*A(x)) * C(x*A(x)^3), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 11, 95, 977, 11028, 132029, 1646428, 21155077, 278127359, 3723466202, 50586670945, 695676081162, 9665426437561, 135464096419620, 1912922793362142, 27190770354633287, 388734441118885467, 5586079818959767743, 80638973170989453862, 1168864771263296930809
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(n+2*k+1, n-k)/(n+4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(n+2*k+1,n-k)/(n+4*k+1).

A381881 Expansion of (1/x) * Series_Reversion( x / ((1+x)^2 * C(x)) ), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 3, 14, 82, 547, 3958, 30249, 240362, 1966235, 16449495, 140093989, 1210575512, 10587490383, 93540456103, 833619150838, 7484887130882, 67645312129491, 614872423359187, 5617522739173495, 51556112664387720, 475105557839611760, 4394434006611790855
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^2*(1-sqrt(1-4*x))/(2*x)))/x)

Formula

G.f. A(x) satisfies A(x) = (1 + x*A(x))^2 * C(x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(2*n+2,n-k)/(n+2*k+1).
a(n) = binomial(2*(1 + n), n)*hypergeom([(1+n)/2, 1+n/2, -n], [2 + n, 3 + n], -4)/(1 + n). - Stefano Spezia, Mar 09 2025

A054730 Odd n such that genus of modular curve X_0(N) is never equal to n.

Original entry on oeis.org

49267, 74135, 94091, 96463, 102727, 107643, 118639, 138483, 145125, 181703, 182675, 208523, 221943, 237387, 240735, 245263, 255783, 267765, 269627, 272583, 277943, 280647, 283887, 286815, 309663, 313447, 322435, 326355, 336675, 347823, 352719
Offset: 1

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

There are 4329 odd integers in the sequence less than 10^7. - Gheorghe Coserea, May 23 2016

References

  • J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.

Crossrefs

Programs

  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    scan(n) = {
      my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      select(x->(x%2==1), apply(x->(x-1), Vec(select(x->x==-1, inv, 1))));
    };
    scan(400*1000)

Extensions

More terms from Gheorghe Coserea, May 23 2016
Offset corrected by Gheorghe Coserea, May 23 2016

A200757 Noncrossing forests in the regular (n+1)-polygon obtained by a grafting procedure.

Original entry on oeis.org

1, 3, 13, 68, 395, 2450, 15892, 106489, 731379, 5121392, 36425796, 262425982, 1911063188, 14044679173, 104030937139, 775856119012, 5821085551579, 43906627941144, 332742274685104, 2532358764929916, 19346427410500788, 148312939031577504, 1140578980645677208
Offset: 1

Views

Author

F. Chapoton, Nov 22 2011

Keywords

Comments

The sequence counts noncrossing forests (in the regular (n+1)-polygon) that can be obtained from the three noncrossing forests {0-2}, {0-1-2} and {2-0-1} in the triangle with vertices 0,1,2 by a grafting procedure.
This set describes a suboperad of the WQSYM operad.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local F;
          if n=0 then 0 else F:= f(n-1);
          convert(series(x+(x+F)^2/(1-x-F)-F^2/(1-F), x, n+1), polynom) fi
        end:
    a:= n-> coeff(f(n), x, n):
    seq(a(n), n=1..30); # Alois P. Heinz, Nov 22 2011
  • Mathematica
    a[n_] := Sum[ Binomial[3*n - i - 2, 2*n - 1]* Sum[Binomial[j, -2*n + 2*j + i]*(-1)^(n - j)*Binomial[n, j], {j, 0, n}], {i, 0, n - 1}]/n ; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Feb 22 2013, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum(binomial(3*n-i-2,2*n-1)*sum(binomial(j,-2*n+2*j+i)*(-1)^(n-j)*binomial(n,j),j,0,n),i,0,n-1)/n; /* Vladimir Kruchinin, Nov 25 2011 */
  • Sage
    def suite_ncf(N):
        ano = PowerSeriesRing(QQ,'x')
        x = ano.gen()
        F = ano.zero().O(1)
        for k in range(N):
            F = x+((x+F)**2/(1-x-F)-F**2/(1-F))
        return F.O(N+1)
    

Formula

G.f. F satisfies: F = x +(x+F)^2/(1-x-F) -F^2/(1-F).
a(n) = sum(i=0..n-1, C(3*n-i-2,2*n-1)*sum(j=0..n, C(j,-2*n+2*j+i)*(-1)^(n-j)*C(n,j)))/n, n>0. - Vladimir Kruchinin, Nov 25 2011
a(n) = Sum_{k=0..n-1} (C(n-1,k)*C(n+2*k,n+k-1))/(n+k). - Vladimir Kruchinin, Mar 02 2013
Recurrence: 2*n*(2*n-1)*(37*n^2 - 157*n + 156)*a(n) = 2*(592*n^4 - 3696*n^3 + 8051*n^2 - 7215*n + 2196)*a(n-1) + 2*(n-3)*(148*n^3 - 702*n^2 + 977*n - 348)*a(n-2) - 5*(n-4)*(n-3)*(37*n^2 - 83*n + 36)*a(n-3). - Vaclav Kotesovec, Aug 15 2013
a(n) ~ c*d^n/n^(3/2), where d = 8.22469154... is the root of the equation 5-8*d-32*d^2+4*d^3=0 and c = 0.11149743370995366254... - Vaclav Kotesovec, Aug 15 2013
Previous Showing 11-14 of 14 results.